“Oseen–Poiseuille” equations are developed from an asymptotic formulation of the three-dimensional Navier–Stokes equations in order to study the influence of weak inertia on flows between rough surfaces. The impact of the first correction on macroscopic flow due to inertia has been determined by solving these equations numerically. From the numerical convergence of the asymptotic expansion to the three-dimensional Navier–Stokes flows, it is shown that, at the macroscopic scale, the quadratic correction to the Reynolds equation in the weak-inertial regime vanishes generalizing a similar result in porous media.
REFERENCES
1.
I. J.
Sobey
, “Dispersion caused by separation during oscillatory flow through a furrowed channel
,” Chem. Eng. Sci.
40
, 2129
(1985
).2.
S. W.
Jones
, O. M.
Thomas
, and H.
Aref
, “Chaotic advection by laminar flow in a twisted pipe
,” J. Fluid Mech.
209
, 335
(1989
).3.
W. R.
Dean
, “Note on the motion of fluid in a curved pipe
,” Philos. Mag.
4
, 208
(1927
).4.
W. R.
Dean
, “The streamline motion of fluid in a curved pipe
,” Philos. Mag.
5
, 673
(1928
).5.
A. D.
Stroock
, S. K. W.
Dertinger
, A.
Ajdari
, I.
Mezic
, H. A.
Stone
, and G. M.
Whitesides
, “Chaotic mixer for microchannels
,” Science
295
, 647
(2002
).6.
H.
Aref
, “Stirring by chaotic advection
,” J. Fluid Mech.
143
, 1
(1984
).7.
A. D.
Stroock
, S. K.
Dertinger
, G. M.
Whitesides
, and A.
Ajdari
, “Patterning flows using grooved surfaces
,” Anal. Chem.
74
, 5306
(2002
).8.
B.
Sunden
and S.
Trollheden
, “Periodic laminar flow and heat transfer in a corrugated two dimensional channel
,” Int. Commun. Heat Mass Transfer
16
, 215
(1989
).9.
H.
Zhou
, R. E.
Khayat
, R. J.
Matinuzzi
, and A. G.
Straatman
, “On the validity of the perturbation approach for the flow inside weakly modulated channels
,” Int. J. Numer. Methods Fluids
39
, 1139
(2002
).10.
J.
Ashmore
, A. E.
Hosoi
, and H. A.
Stone
, “The effect of surface tension on rimming flows in a partially filled rotating cylinder
,” J. Fluid Mech.
479
, 65
(2003
).11.
A. E.
Hosoi
and L.
Mahadevan
, “Axial instability of a free-surface front in a partially-filled horizontal rotating cylinder
,” Phys. Fluids
11
, 97
(1999
).12.
S. P.
Lin
, “Finite amplitude side-band stability of a viscous film
,” J. Fluid Mech.
63
, 417
(1974
).13.
W. G.
Pritchard
, L. R.
Scott
, and S. J.
Tavener
, “Numerical and asymptotic methods for certain viscous free-surface flows
,” Philos. Trans. R. Soc. London, Ser. A
340
, 1
(1992
).14.
S.
Ubal
, M. D.
Giavedoni
, and F. A.
Saita
, “A numerical analysis of the influence of the liquid depth on two-dimensional Faraday waves
,” Phys. Fluids
15
, 3099
(2003
).15.
H.-C.
Chang
, E. A.
Demekhin
, and D. I.
Kopelevich
, “Nonlinear evolution of waves on a vertically falling film
,” J. Fluid Mech.
250
, 433
(1993
).16.
P. H.
Gaskell
, P. K.
Jimack
, M.
Sellier
, H. M.
Thompson
, and M. C. T.
Wilson
, “Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography
,” J. Fluid Mech.
509
, 253
(2004
).17.
D. R.
Sawyers
, M.
Sen
, and H.-C.
Chang
, “Heat transfer enhancement in three-dimensional corrugated channel flow
,” Int. J. Heat Mass Transfer
41
, 3559
(1998
).18.
M. R.
Siddique
and R. E.
Khayat
, “Influence of inertia and topography in thin-cavity flow
,” Phys. Fluids
14
, 1703
(2002
).19.
C. C.
Mei
and J.-L.
Auriault
, “Mechanics of heterogeneous porous-media with several spatial scales
,” Proc. R. Soc. London, Ser. A
426
, 391
(1989
).20.
M.
Firdaouss
, J.-L.
Guermond
, and P.
Le Quéré
, “Nonlinear corrections to Darcy’s law at low Reynolds numbers
,” J. Fluid Mech.
343
, 331
(1997
).21.
E.
Skjetne
, A.
Hansen
, and J. S.
Gudmundsson
, “High-velocity flow in a rough fracture
,” J. Fluid Mech.
383
, 1
(1999
).22.
E. O.
Tuck
and A.
Kouzoubov
, “A laminar roughness boundary-condition
,” J. Fluid Mech.
300
, 59
(1995
).23.
M.
Prat
, F.
Plouraboué
, and N.
Letalleur
, “Averaged Reynolds equation for flow between rough surfaces in sliding motion
,” Transp. Porous Media
48
, 291
(2002
).24.
F.
Plouraboué
, P.
Kurowski
, J. M.
Boffa
, J. P.
Hulin
, and S.
Roux
, “Experimental study of the transport properties of rough self-affine fractures
,” J. Contam. Hydrol.
46
, 295
(2000
).25.
F.
Plouraboué
, P.
Kurowski
, J. P.
Hulin
, S.
Roux
, and J.
Schmittbuhl
, “Aperture of rough cracks
,” Phys. Rev. E
51
, 1675
(1995
).26.
C.
Canuto
, M. Y.
Hussaini
, A.
Quarteroni
, and T. A.
Zang
, Spectral Methods in Fluid Dynamics
(Springer
, New York, 1987
).27.
D.
Funaro
, Polynomial Approximation of Differential Equations
(Springer
, New York, 1991
).28.
M.
Azaïez
, A.
Bergeon
, and F.
Plouraboué
, “A new preconditionner for nonseparable elliptic equations
,” C. R. Mec.
331
, 509
(2003
).29.
R. E.
Lynch
, J. R.
Rice
, and D. H.
Thomas
, “Direct solution for partial difference equations by tensor product methods
,” Numer. Math.
6
, 185
(1964
).30.
G. E.
Karniadakis
, M.
Israeli
, and S. A.
Orszag
, “High-order splitting method for the incompressible Navier–Stokes
,” J. Comput. Phys.
97
, 414
(1991
).31.
A. T.
Patera
, “A spectral element method for fluid dynamics: Laminar flow in a channel expansion
,” J. Comput. Phys.
54
, 468
(1984
).32.
M.
Quintard
and S.
Whitaker
, “Ecoulement monophasique en milieu poreux: effet des heterogeneites locales
,” J. Mec. Theor. Appl.
6
, 691
(1987
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.