This paper presents results of an experimental investigation of a single drop impact onto a dry, partially wettable substrate and its numerical simulation. Particularly, the drop spreading diameter and the dynamic contact angle are measured at different time instants after impact. Two surfaces, wax (low wettability) and glass (high wettability), are used to study the effect of surface wettability (static contact angle) on the impact dynamics. It is shown that existing empirical models for the dynamic contact angle (e.g., Hoffman–Voinov–Tanner law) do not predict well the change of the dynamic contact angle, especially at high capillary numbers. In addition to the experimental investigations, the drop impact was studied numerically, focusing primarily on the contact angle treatment. The singularity in the neighborhood of the moving contact line is removed from the computational domain and replaced by a local force with some dependence on the instantaneous advancing/receding contact-line velocity. The predicted time dependence of the drop spreading diameter and of the dynamic contact angle agrees well with the experimental data for both the advancing and receding phases of the impact process.

1.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
(
1993
).
2.
S.
Chandra
and
C. T.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London, Ser. A
432
,
13
(
1991
).
3.
A.
Frohn
and
N.
Roth
,
Dynamics of Droplets
(
Springer
, Berlin,
2000
).
4.
Drop–Surface Interactions
, edited by
M.
Rein
(
Springer
, Berlin,
2000
).
5.
O. G.
Engel
, “
Water drop collision with solid surfaces
,”
J. Res. Natl. Bur. Stand.
54
,
281
(
1953
).
6.
Z.
Levin
and
P. V.
Hobbs
, “
Splashing of water drops on solid and wetted surfaces: Hydrodynamics and charge separation
,”
Philos. Trans. R. Soc. London, Ser. A
269
,
555
(
1971
).
7.
C. D.
Stow
and
M. G.
Hadfield
, “
An experimental investigation of fluid flow resulting from the impact of a water drop with unyielding dry surface
,”
J. Meteorol. Soc. Jpn.
55
,
518
(
1980
).
8.
C.
Mundo
,
M.
Sommerfeld
, and
C.
Tropea
, “
Droplet–wall collisions: Experimental studies of the deformation and breakup process
,”
Int. J. Multiphase Flow
21
,
151
(
1995
).
9.
G. E.
Cossali
,
A.
Coghe
, and
M.
Marengo
, “
The impact of a single drop on a wetted solid surface
,”
Exp. Fluids
22
,
463
(
1997
).
10.
K.
Range
and
F.
Feuillebois
, “
Influence of surface roughness on liquid drop impact
,”
J. Colloid Interface Sci.
203
,
16
(
1998
).
11.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
,
155
(
2001
).
12.
A. M.
Worthington
, “
On the forms assumed by drops of liquids falling vertically on a horizontal plate
,”
Proc. R. Soc. London
25
,
261
(
1876
).
13.
G. S.
Hartley
and
R. T.
Brunskill
, “
Reflection of water drops from surfaces
,”
Surface Phenomena in Chemistry and Biology
(
Pergamon
, Oxford,
1958
), Vol.
57
, p.
214
.
14.
R. E.
Ford
and
C. G.L.
Furmidge
, “
Impact and spreading of spray drops on foliar surfaces
,”
Wetting
(
Society of Chemical Industry Monograph
, London,
1967
), Vol.
25
, p.
417
.
15.
J.
Fukai
,
Y.
Shiiba
,
T.
Yamamoto
,
O.
Miyatake
,
D.
Poulikakos
,
C. M.
Megaridis
, and
Z.
Zhao
, “
Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling
,”
Phys. Fluids
7
,
236
(
1995
).
16.
M.
Pasandideh-Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
(
1996
).
17.
T.
Mao
,
D. C.S.
Kuhn
, and
H.
Tran
, “
Spread and rebound of liquid droplets upon impact on flat surfaces
,”
AIChE J.
43
,
2169
(
1997
).
18.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
,
112
(
2001
).
19.
I. V.
Roisman
,
R.
Rioboo
, and
C.
Tropea
, “
Normal impact of a liquid drop on a dry surface: Model for spreading and receding
,”
Proc. R. Soc. London, Ser. A
458
,
1411
(
2002
).
20.
I. V.
Roisman
,
B.
Prunet-Foch
,
C.
Tropea
, and
M.
Vignes-Adler
, “
Multiphase drop impact onto a dry substrate
,”
J. Colloid Interface Sci.
256
,
396
(
2002
).
21.
F. H.
Harlow
and
J. P.
Shannon
, “
The splash of a liquid drop
,”
J. Appl. Phys.
38
,
257
(
1967
).
22.
J.
Fukai
,
Z.
Zhao
,
D.
Poulikakos
,
C. M.
Megaridis
, and
O.
Miyatake
, “
Modeling of the deformation of a liquid droplet impinging upon a flat surface
,”
Phys. Fluids A
5
,
2588
(
1993
).
23.
A.
Karl
,
M.
Rieber
,
M.
Shelkle
,
K.
Anders
, and
A.
Frohn
, “
Comparison of new numerical results for droplet wall interactions with experimental results
,”
Proceedings of the ASME Fluid Engineering Division Summer Meeting
, edited by
H.
Coleman
 et al (San Diego,
1996
), Vol.
1
, p.
202
206
.
24.
A.
Karl
,
K.
Anders
,
M.
Rieber
, and
A.
Frohn
, “
Deformation of liquid droplets during collisions with hot walls: Experimental and numerical results
,”
Part. Part. Syst. Charact.
13
,
186
(
1996
).
25.
D. A.
Weiss
and
A.
Yarin
, “
Single drop impact onto liquid films: Neck distortion, jetting, tiny bubble entrainment, and crown formation
,”
J. Fluid Mech.
385
,
229
(
1999
).
26.
M.
Bussmann
,
J.
Mostaghimi
, and
S.
Chandra
, “
On a three-dimensional volume tracking model of droplet impact
,”
Phys. Fluids
11
,
1406
(
1999
).
27.
M.
Bussmann
,
S.
Chandra
, and
J.
Mostaghimi
, “
Modeling the splash of a droplet impacting a solid surface
,”
Phys. Fluids
12
,
3121
(
2000
).
28.
C.
Josserand
and
S.
Zaleski
, “
Droplet splashing on a thin liquid film
,”
Phys. Fluids
15
,
1650
(
2003
).
29.
P. R.
Gunjal
,
V. V.
Ranade
, and
R. V.
Chaudhari
, “
Dynamics of drop impact on solid surface: Experiments and VOF simulations
,”
AIChE J.
51
,
59
(
2005
).
30.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
(
1981
).
31.
D. T.
Blake
and
J. K.
Ruschak
, “
Wetting: Static and dynamic contact lines
,” in
Liquid Film Coating
, edited by
F. S.
Kistler
and
M. P.
Schweizer
(
Chapman and Hall
, London,
1997
), pp.
63
97
.
32.
Y. D.
Kwok
and
W. A.
Neumann
, “
Contact angle measurement and contact angle interpretation
,”
Adv. Colloid Interface Sci.
81
,
167
(
1999
).
33.
Y. D.
Shikhmurzaev
, “
The moving contact line on a smooth solid surface
,”
Int. J. Multiphase Flow
19
,
589
(
1993
).
34.
Y. D.
Shikhmurzaev
, “
Dynamic contact angles in gas/liquid/solid systems and flow in vicinity of moving contact line
,”
AIChE J.
42
,
601
(
1996
).
35.
Y. D.
Shikhmurzaev
, “
Moving contact lines in liquid/liquid/solid systems
,”
J. Fluid Mech.
334
,
211
(
1997
).
36.
Y. D.
Shikhmurzaev
, “
Spreading of drops on solid surfaces in a quasi-static regime
,”
Phys. Fluids
9
,
266
(
1997
).
37.
T. D.
Blake
,
M.
Bracke
, and
Y. D.
Shikhmurzaev
, “
Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle
,”
Phys. Fluids
11
,
1995
(
1999
).
38.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
(
1986
).
39.
H. K.
Moffat
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
,
1
(
1964
).
40.
R. L.
Hoffman
, “
A study of the advancing interface. I. Interface shape in liquid–gas systems
,”
J. Colloid Interface Sci.
50
,
228
(
1975
).
41.
T.
Jiang
,
S.
Oh
, and
J. C.
Slattery
, “
Correlation for dynamic contact angle
,”
J. Colloid Interface Sci.
69
,
74
(
1979
).
42.
M.
Bracke
,
F.
De Voeght
, and
P.
Joos
, “
The kinematics of wetting: The dynamic contact angle
,”
Prog. Colloid Polym. Sci.
79
,
142
(
1989
).
43.
J. E.
Seebergh
and
J. C.
Berg
, “
Dynamic wetting in the low capillary number regime
,”
Chem. Eng. Sci.
47
,
4455
(
1992
).
44.
S. F.
Kistler
, “
Hydrodynamics of wetting
,” in
Wettability
, edited by
J. C.
Berg
(
Marcel Dekker
, New York,
1993
), p.
311
.
45.
Š.
Šikalo
,
M.
Marengo
,
C.
Tropea
, and
E. N.
Ganić
, “
Analysis of droplet impact on horizontal surfaces
,”
Exp. Therm. Fluid Sci.
25
,
503
(
2002
).
46.
S.
Muzaferija
and
M.
Perić
, “
Computations of free surface flows using interface-tracking and interface-capturing methods
,” in
Nonlinear Water Wave Interaction
, edited by
O.
Mahrenholtz
and
M.
Markiewicz
(
WIT Press
, Southampton,
1998
).
47.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
48.
COMET User Manual
, Institute of Computational Continuum Mechanics GmbH, Hamburg, Germany (February
1998
).
49.
M.
Rieber
and
A.
Frohn
, “
A numerical study of the mechanism of splashing
,”
Int. J. Heat Fluid Flow
20
,
455
(
1999
).
50.
T. D.
Blake
, “
Dynamic contact angles and wetting kinetics
,” in
Wettability
,
Surfactant Science Series
, edited by
J. C.
Berg
(
Marcel Dekker
, New York,
1993
), Vol.
49
, p.
251
.
51.
R. G.
Cox
, “
Inertial and viscous effects on dynamic contact angles
,”
J. Fluid Mech.
357
,
249
(
1998
).
52.
H.
Fujimoto
,
H.
Shiraishi
, and
N.
Hatta
, “
Evolution of liquid/solid contact area of a drop impinging on a solid surface
,”
Int. J. Heat Mass Transfer
43
,
1673
(
2000
).
53.
V.
Mehdi-Nejad
,
J.
Mostaghimi
, and
S.
Chandra
, “
Air bubble entrapment under an impacting droplet
,”
Phys. Fluids
15
,
173
(
2003
).
You do not currently have access to this content.