A novel technique for the self-assembly of three-dimensional mesoscopic structures in a forced fluid flow by employing a magnetic field is described. There are advantages of using magnetic fields for this purpose: unlike many other forces, a magnetic force is effective even from a distance, permitting “action at a distance,” it is also localized, and competition between the magnetic force and fluid shear enables unique self-assembled ferrofluid structures. Herein, a simulation provides insight into the possibility of using magnetic field to assemble colloidal nanoparticles into aggregates. Subsequently, a demonstration experiment is conducted to characterize the development and decay of such aggregates. The analysis provides a basis for developing effective self-assembly techniques for various engineering applications.

1.
P.
Alstrom
and
D.
Stassinopoulos
, “
Versatility and adaptive performance
,”
Phys. Rev. E
51
,
5027
(
1995
).
2.
E. W.
Seeling
,
B.
Tang
,
A.
Yamilov
,
H.
Cao
, and
R. P.H.
Chang
, “
Self-assembled 3D photonic crystals from ZnO colloidal spheres
,”
Mater. Chem. Phys.
80
,
257
(
2003
).
3.
R. R.A.
Syms
,
E. M.
Yeatman
,
V. M.
Bright
, and
G. M.
Whitesides
, “
Surface tension-powered self-assembly of micro structures—The state-of-the-art
,”
J. Micromech. Microeng.
12
,
387
(
2003
).
4.
P. K.
Maini
,
K. J.
Painter
, and
H. N.P.
Chau
, “
Spatial pattern formation in chemical and biological systems
,”
J. Chem. Soc., Faraday Trans.
93
,
3601
(
1997
).
5.
R.
Kapral
, “
Pattern-formation in chemical-systems
,”
Physica D
86
,
149
(
1995
).
6.
B. A.
Grzybowski
,
A.
Winkleman
,
J. A.
Wiles
,
Y.
Brumer
, and
G. M.
Whitesides
, “
Electrostatic self-assembly of macroscopic crystals using contact electrification
,”
Nat. Mater.
2
,
241
(
2003
).
7.
N.
Bowden
,
A.
Terfort
,
J.
Carbeck
, and
G. M.
Whitesides
, “
Self-assembly of mesoscale objects into ordered two-dimensional arrays
,”
Science
276
,
233
(
1997
).
8.
H-J. J.
Yeh
and
J. S.
Smith
, “
Fluidic self-assembly for the integration of GaAs light-emitting-diodes on Si substrates
,”
IEEE Photonics Technol. Lett.
6
,
706
(
1994
).
9.
J. C.
Shelley
and
M. Y.
Shelley
, “
Computer simulation of surfactant solutions
,”
Curr. Opin. Colloid Interface Sci.
5
,
101
(
2000
).
10.
S.
Anders
,
S.
Sun
,
C. B.
Murray
,
C. T.
Rettner
,
M. E.
Best
,
T.
Thomson
,
M.
Albrecht
,
J.-U.
Thiele
,
E. E.
Fullerton
, and
B. D.
Terris
, “
Lithography and self-assembly for nanometer scale magnetism
,”
Microelectron. Eng.
61-62
,
569
(
2002
).
11.
T. L.
Breen
,
J.
Tien
,
S. R.J.
Oliver
,
T.
Hadzic
, and
G. M.
Whitesides
, “
Design and self-assembly of open, regular, 3D mesostructures
,”
Science
284
,
948
(
1999
).
12.
B. M.
Berkovsky
,
Proceedings of the International Advanced Course and Workshop on Thermomechanics of Magnetic Fluids
, edited by
B.
Berkovsky
(
Hemisphere
, Washington, DC,
1978
), p.
149
13.
Q.
Chen
and
Z. J.
Zhang
, “
Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites
,”
Appl. Phys. Lett.
73
,
3156
(
1998
).
14.
V. E.
Fertman
,
Magnetic Fluids Handbook: Properties and Application
(
Hemisphere
, New York,
1988
).
15.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Dover, Mineola
, NY,
1997
).
16.
S.
Odenbach
, “
Ferrofluids—magnetically controlled suspensions
,”
Colloids Surf., A
217
,
171
(
2003
).
17.
R. E.
Goldstein
,
D. P.
Jackson
, and
S. A.
Langer
, “
Dynamics of pattern-formation in magnetic fluids
,”
J. Magn. Magn. Mater.
122
,
267
(
1993
).
18.
I. J.
Jang
,
H. E.
Horng
,
Y. C.
Chiou
,
C.-Y.
Hong
,
J. M.
Yu
, and
H. C.
Yang
, “
Pattern formation in microdrops of magnetic fluids
,”
J. Magn. Magn. Mater.
201
,
317
(
1999
).
19.
B.
Yellen
,
G.
Friedman
, and
A.
Feinerman
, “
Printing superparamagnetic colloidal particle arrays on patterned magnetic film
,”
J. Appl. Phys.
93
,
7331
(
2003
).
20.
A. G.
Boudouvis
and
L. E.
Scriven
, “
Sensitivity analysis of hysteresis in deformation of ferrofluid drops
,”
J. Magn. Magn. Mater.
122
,
254
(
1993
).
21.
A.
Sinha
,
R.
Ganguly
, and
I. K.
Puri
, “
Magnetically assembled 3-d mesoscopic patterns using a suspension of superparamagnetic nanoparticles
,” ASME Integrated Nanosystems—Design, Synthesis and Applications, Pasadena, CA, September
2004
, Paper No. NANO2004-46091.
22.
H.
Hartshorne
,
C. J.
Backhouse
, and
W. E.
Lee
, “
Ferrofluid-based microchip pump and valve
,”
Sens. Actuators B
99
,
592
(
2004
).
23.
A. S.
Lubbe
,
C.
Bergemann
,
J.
Brock
, and
D. G.
McClure
, “
Physiological aspects in magnetic drug-targeting
,”
J. Magn. Magn. Mater.
194
,
149
(
1999
).
24.
P. A.
Voltairas
,
D. I.
Fotiadis
, and
L. K.
Michalis
, “
Hydrodynamics of magnetic drug targeting
,”
J. Biomech.
35
,
813
(
2002
).
25.
R.
Ganguly
,
S.
Sen
, and
I. K.
Puri
, “
Heat transfer augmentation using a magnetic fluid under the influence of a line-dipole
,”
J. Magn. Magn. Mater.
271
,
63
(
2004
).
26.
R.
Ganguly
,
S.
Sen
, and
I. K.
Puri
, “
Thermomagnetic convection in a square enclosure using a line dipole
,”
Phys. Fluids
16
,
2228
(
2004
).
27.
A.
Lange
, “
Kelvin force in a layer of magnetic fluid
,”
J. Magn. Magn. Mater.
241
,
327
(
2002
).
28.
G. A.
van Ewijk
,
G. J.
Vroege
, and
A. P.
Phillipse
, “
Susceptibility measurements on a fractionated aggregate-free ferrofluid
,”
J. Phys.: Condens. Matter
14
,
4915
(
2002
).
29.
M. I.
Shliomis
and
V. I.
Stepanov
, “
Rotational viscosity of magnetic fluids—contribution of the Brownian and Neel relaxational processes
,”
J. Magn. Magn. Mater.
122
,
196
(
1993
).
30.
H. W.
Müller
and
A.
Engel
, “
Dissipation in ferrofluids: Mesoscopic versus hydrodynamic theory
,”
Phys. Rev. E
60
,
7001
(
1999
).
31.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Prentice-Hall
, New Delhi,
2002
) (reprint).
32.
M.
Zahn
,
Electromagnetic Field Theory
(
Wiley
, New York,
1979
).
Equation (9) (p. 369) for zero-free current (i.e., Jf=0) implies that Ii=μ0Mj(Hixj)+12μ0xi(MjMj). Using Maxwell’s equation for Jf=0, i.e., Hixj=Hjxi, one gets, Ii=Mj(μ0Hjxi+μ0Mjxi)=MjBjxi. However, the body force around a single particle is computed from the volume integral fi=vIiDV, where the particle of volume V is surrounded by the carrier fluid having zero magnetization and Eq. (12) (p. 370) leads to the expression of the force on a single particle as fi=μ0mpjHixj.
33.
R. F.
Probestein
,
Physicochemical Hydrodynamics
(
Wiley
, New York,
1994
).
34.
C. W.
Hirt
,
B. D.
Nicols
, and
N. C.
Romero
, “
SOLA—a numerical algorithm for transient fluid flows
,”
Los Alamos Scientific Laboratory
Report No. LA-5852, Los Alamos, NM,
1975
.
35.
S. V.
Patankar
,
Numerical Heat Transfer and Fluid Flow
(
Hemisphere
, Washington, DC,
1980
).
36.
J. J.
Becker
,
F. E.
Luborsky
, and
D. L.
Martin
, “
Permanent magnet materials
,”
IEEE Trans. Magn.
4
(
2
),
84
(
1968
).
37.
E.
Blūms
,
J.
Plavinš
, and
A.
Chukhrov
, “
High-gradient magnetic separation of magnetic colloids and suspensions
,”
J. Magn. Magn. Mater.
39
,
147
(
1983
).
38.
D.
Kim
and
H.
Choi
, “
Laminar flow past a hemisphere
,”
Phys. Fluids
15
,
2457
(
2003
).
You do not currently have access to this content.