Axisymmetric and two-dimensional dam-break problems are solved under the shallow layer approximation and with basal Coulomb friction in a first attempt to model recent granular slumping experiments [G. Lube, H. E. Huppert, R. S. J. Sparks, and M. A. Hallworth, J. Fluid Mech.508, 175 (2004); E. Lajeunesse, A. Mangeney-Castelnau, and J. P. Vilotte, Phys. Fluids16, 2371 (2004); N. J. Balmforth and R. R. Kerswell, J. Fluid Mech. (in press)]. The axisymmetric model predicts a scaling law h0ha for the ratio of initial to final maximum heights which compares well with the slumping data over a wide range of ah0r0, the initial aspect ratio (h0 and r0 are the initial height and radius). The predicted runout scaling (rr0)r0a, however, significantly overestimates the data runout which behaves more like a (r being the maximum final radius). This situation may be improved by redefining the runout to take account of the finite granule size but a noticeable discrepancy still remains. The runout scaling prediction in the two-dimensional case mirrors the axisymmetric result, whereas in two dimensions h0haα with α23 as a and ah0l0 where l0 is the initial base length of the column. The limitations of the model and possible improvements are discussed.

1.
H. M.
Jaeger
,
S. R.
Nagel
, and
R. P.
Behringer
, “
Granular solids, liquids and gases
,”
Rev. Mod. Phys.
68
,
1259
(
1996
).
2.
P. G.
de Gennes
, “
Granular matter: A tentative view
,”
Rev. Mod. Phys.
71
, S
374
(
1999
).
3.
J.
Rajchenbach
, “
Granular flows
,”
Adv. Phys.
49
,
229
(
2000
).
4.
I.
Goldhirsch
, “
Rapid granular flows
,”
Annu. Rev. Fluid Mech.
35
,
267
(
2003
).
5.
S. B.
Savage
and
K.
Hutter
, “
The motion of a finite mass of granular material down a rough incline
,”
J. Fluid Mech.
199
,
177
(
1989
).
6.
P. C.
Johnson
,
P.
Nott
, and
R.
Jackson
, “
Frictional-collisional equations of motion for particulate flows and their application to chutes
,”
J. Fluid Mech.
210
,
501
(
1990
).
7.
K. G.
Anderson
and
R.
Jackson
, “
A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes
,”
J. Fluid Mech.
92
,
145
(
1992
).
8.
O.
Pouliquen
, “
Scaling laws in granular flows down rough inclined planes
,”
Phys. Fluids
11
,
542
(
1999
).
9.
R. M.
Iverson
and
R. P.
Denlinger
, “
Flow of variably fluidized granular masses across three-dimensional terrain: Part I: Coulomb mixture theory
,”
J. Geophys. Res.
106
,
537
(
2001
).
10.
O.
Pouliquen
and
Y.
Forterre
, “
Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane
,”
J. Fluid Mech.
453
,
1333
(
2002
).
11.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
M. A.
Hallworth
, “
Axisymmetric collapses of granular columns
,”
J. Fluid Mech.
508
,
175
(
2004
).
12.
E.
Lajeunesse
,
A.
Mangeney-Castelnau
, and
J. P.
Vilotte
, “
Spreading of a granular mass on a horizontal plane
,”
Phys. Fluids
16
,
2371
(
2004
).
13.
N. J.
Balmforth
and
R. R.
Kerswell
, “
Granular collapse in two dimensions
,”
J. Fluid Mech.
(in press).
14.
A.
Mangeney
,
P.
Heinrich
, and
R.
Roche
, “
Analytical solution for testing debris avalanche numerical models
,”
Pure Appl. Geophys.
157
,
1081
(
2000
).
15.
A. J.
Hogg
and
D.
Pritchard
, “
The effects of hydraulic resistance on dam-break and other shallow inertial flows
,”
J. Fluid Mech.
501
,
179
(
2004
).
16.
A.
Mangeney-Castelnau
,
F.
Bouchet
,
E.
Lajeunesse
,
A.
Aubertin
, and
J. P.
Vilotte
, “
On the use of Saint-Venant equations for simulating the spreading of a granular mass
,”
J. Geophys. Res.
(in press).
17.
B.
Riemann
, “
Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite
,”
Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-phyikalische Klasse
8
,
43
(
1860
).
18.
P. R.
Garabedian
,
Partial Differential Equations
(
Wiley
, New York,
1964
).
19.
R.
Courant
and
K. O.
Friedrichs
,
Supersonic Flow and Shock Waves
(
Interscience
, Baltimore, MA,
1948
).
20.
A.
Ritter
, “
Die Fortpflanzung der Wasserwellen
,”
Z. Vereines Deutsch. Ing.
36
,
947
(
1892
).
You do not currently have access to this content.