A new constructive method for computing the motion of a single point vortex around an arbitrary finite number of circular islands in the special case when the circulations around all the islands are zero is presented. In this case, explicit representations for the governing Hamiltonians can be found and used to study the vortex trajectories. An example application is to geophysical flows and this study provides a simple model of the interaction of ocean eddies with topography. A wide range of illustrative examples are given, including the case of various multi-island configurations lying off an infinite coastline as well as in an unbounded ocean. The critical trajectories (or separatrices) dividing the flow domain into regions of qualitatively different dynamics of the vortices can be computed in a systematic and unified fashion irrespective of the number of islands present.

1.
H.
Aref
,
P. K.
Newton
,
M.
Stremler
,
T.
Tokieda
, and
D. L.
Vainchtein
, “
Vortex crystals
,”
Adv. Appl. Mech.
39
,
1
(
2002
).
2.
P. K.
Newton
, The N-Vortex Problem (
Springer
, New York,
2002
).
3.
D. J
Acheson
,
Elementary Fluid Dynamics
(
Oxford University Press
, Oxford,
1990
).
4.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
, Cambridge,
1992
).
5.
E. J.
Routh
, “
Some applications of conjugate functions
,”
Proc. R. Soc. London
12
,
73
(
1881
).
6.
C. C.
Lin
, “
On the motion of vortices in two dimensions—I. Existence of the Kirchhoff–Routh function
,”
Proc. Natl. Acad. Sci. U.S.A.
27
,
570
(
1941
).
7.
C. C.
Lin
, “
On the motion of vortices in two dimensions—II. Some further investigations on the Kirchhoff–Routh function
,”
Proc. Natl. Acad. Sci. U.S.A.
27
,
575
(
1941
).
8.
M.
Flucher
and
B.
Gustafsson
, “
Vortex motion in two dimensional hydrodynamics
,” Royal Institute of Technology Report No. TRITA-MAT-97-MA 02,
1997
.
9.
E. R.
Johnson
and
N. R.
McDonald
, “
The motion of a vortex near two circular cylinders
,”
Proc. R. Soc. London, Ser. A
460
,
939
(
2004
).
10.
H. L
Simmons
and
D.
Nof
, “
Islands as eddy splitters
,”
J. Mar. Res.
58
,
919
(
2000
).
11.
W. K.
Dewar
, “
Baroclinic eddy interaction with isolated topography
,”
J. Phys. Oceanogr.
32
,
2789
(
2002
).
12.
H. L
Simmons
and
D.
Nof
, “
The squeezing of eddies through gaps
,”
J. Phys. Oceanogr.
32
,
314
(
2002
).
13.
D.
Nof
, “
Choked flows from the Pacific to the Indian Ocean
,”
J. Phys. Oceanogr.
25
,
1369
(
1995
).
14.
E. R.
Johnson
and
N. R.
McDonald
, “
The motion of a vortex near a gap in a wall
,”
Phys. Fluids
16
,
462
(
2004
).
15.
R.
Kidambi
and
P.
Newton
, “
Vortex motion on a sphere with solid boundaries
,”
Phys. Fluids
12
,
581
(
2000
).
16.
D. G.
Crowdy
and
J. S.
Marshall
, “
Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains
,”
Proc. R. Soc. London, Ser. A
(to be published).
17.
M. J.
Ablowitz
and
A. S.
Fokas
,
Complex Variables
(
Cambridge University Press
, Cambridge,
1997
).
18.
Z.
Nehari
,
Conformal Mapping
(
McGraw-Hill
, New York,
1952
).
19.
E. T.
Whittaker
and
G. N
Watson
,
A Course of Modern Analysis
(
Cambridge University Press
, Cambridge,
1927
).
20.
P.
Henrici
,
Applied and Computational Complex Analysis
(
Wiley Interscience
, New York,
1986
).
21.
T. K.
DeLillo
,
M. A.
Horn
, and
J. A.
Pfaltzgraff
, “
Numerical conformal mapping of multiply connected regions by Fornberg-like methods
,”
Numer. Math.
83
,
205
(
1999
).
You do not currently have access to this content.