A family of finite area translating monopolar vortices which propagate steadily without change of shape (V states) is found for shallow flow near a finite step change in depth. Solutions are obtained numerically and are unique for a given volume and center of vorticity. Time-dependent integrations show that these vortices are robust: flows initialized with a V state remain close to the V state and flows initialized with a circular vortex shed vorticity to approach a V state. The translational velocity of the vortices is shown to be finite and, unlike that of a singular line vortex, not to increase without limit as the center of vorticity approaches the escarpment.

1.
H. T.
Ozkan-Haller
and
J. T.
Kirby
, “
Nonlinear evolution of the longshore current: A comparison of observations and computations
,”
J. Geophys. Res.
104
,
25953
(
1999
).
2.
D. H.
Peregrine
, “
Surf zone currents
,”
Theor. Comput. Fluid Dyn.
10
,
295
(
1998
).
3.
O.
Buhler
and
T. E.
Jacobson
, “
Wave-driven currents and vortex dynamcis on barred beaches
,”
J. Fluid Mech.
449
,
313
(
2001
).
4.
E. R.
Johnson
, “
Trapped vorticies in rotating flow
,”
J. Fluid Mech.
86
,
209
(
1978
).
5.
S. A.
Thorpe
and
L. R.
Centurioni
, “
On the use of the method of images to investigate nearshore dynamical processes
,”
J. Mar. Res.
58
,
779
(
2000
).
6.
G.
Richardson
, “
Vortex motion in shallow water with varying bottom topography and zero Froude number
,”
J. Fluid Mech.
411
,
351
(
2000
).
7.
E. R.
Johnson
and
N. R.
McDonald
, “
Surf zone vortices over stepped topography
,”
J. Fluid Mech.
511
,
265
(
2004
).
8.
D. G.
Dritschel
, “
Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics
,”
J. Comput. Phys.
77
,
240
(
1988
).
9.
G.
Deem
and
N.
Zabusky
, “
Stationary ‘V states,’ interactions, recurrence and breakings
,”
Phys. Rev. Lett.
40
,
859
(
1978
).
10.
R.
Pierrehumbert
, “
A family of steady, translating vortex pairs with distributed vorticity
,”
J. Fluid Mech.
99
,
129
(
1980
).
11.
P.
Saffman
and
S.
Tanveer
, “
The touching pair of equal and opposite uniform vorticies
,”
Phys. Fluids
25
,
1929
(
1982
).
12.
H. M.
Wu
,
E. A.
Overman
, and
N. J.
Zabusky
, “
Steady-state solutions to the Euler equations in two dimensions: Rotating and translating V states with limiting cases. I. Numerical algorithms and results
,”
J. Comput. Phys.
77
,
53
(
1984
).
13.
D. G.
Dritschel
, “
A general-theory for 2-dimensional vortex interactions
,”
J. Fluid Mech.
293
,
269
(
1995
).
14.
E. R.
Johnson
and
S. R.
Clarke
, in
Numerical Methods for Fluid Dynamics
,
Inviscid Vortical Boundary Layers
, Vol.
7
, edited by
M. J.
Baines
and
K.
Morton
(
Oxford University Press
, New York,
1998
), pp.
83
97
.
You do not currently have access to this content.