Using a symmetry-accounting ensemble-averaging method, we have identified the wind in unbounded Rayleigh–Bénard convection. This makes it possible to distinguish the wind from fluctuations and to identify dynamic features of each. We present some results from processing five independent three-dimensional direct numerical simulations of a Γ=4 aspect-ratio domain with periodic side boundaries at Ra=107 and Pr=1. It is found that the wind boundary layer scales linearly very close to the wall and has a logarithmic region further away. Despite the still noticeable molecular effects, the identification of log scaling and significant velocity and temperature fluctuations well within the thermal boundary layer clearly indicate that the boundary layer cannot be classified as laminar.

1.
S.
Grossmann
and
D.
Lohse
, “
Scaling in thermal convection: a unifying theory
,”
J. Fluid Mech.
407
,
27
(
2000
).
2.
B. I.
Shraiman
and
E. D.
Siggia
, “
Heat transport in high Rayleigh-number convection
,”
Phys. Rev. A
42
,
3650
(
1990
).
3.
B.
Castaing
 et al., “
Scaling of hard thermal turbulence in Rayleigh-Bénard convection
,”
J. Fluid Mech.
204
,
1
(
1989
).
4.
R.
Krishnamurti
and
L. N.
Howard
, “
Large-scale flow generation in turbulent convection
,”
Proc. Natl. Acad. Sci. U.S.A.
78
,
1981
(
1981
).
5.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
The wind in confined thermal convection
,”
J. Fluid Mech.
449
,
169
(
2001
).
6.
A.
Parodi
 et al., “
Clustering of plumes in turbulent convection
,”
Phys. Rev. Lett.
92
,
194503
(
2004
).
7.
X.-L.
Qiu
and
P.
Tong
, “
Large-scale velocity structures in turbulent thermal convection
,”
Phys. Rev. E
64
,
036304
(
2001
).
8.
E. B.
Siggia
, “
High Rayleigh number convection
,”
Annu. Rev. Fluid Mech.
26
,
136
(
1994
).
9.
K. R.
Sreenivasan
,
A.
Bershadskii
, and
J. J.
Niemela
, “
Mean wind and its reversal in thermal convection
,”
Phys. Rev. E
65
,
056306
(
2002
).
10.
U.
Frisch
,
Turbulence
(
Cambridge University Press
, Cambridge,
1995
).
11.
M.
Golubitsky
and
I.
Stewart
,
The Symmetry Perspective
(
Birkhauser
, Basel,
2002
).
12.
P.
Chossat
and
M.
Golubitsky
, “
Symmetry-increasing bifurcation of chaotic attractors
,”
Physica D
32
,
423
(
1988
).
13.
O. S.
Eiff
and
J. F.
Keffer
, “
On the structures in the near-wake region of an elevated turbulent jet in a crossflow
,”
J. Fluid Mech.
333
,
161
(
1997
).
14.
S. R.
de Roode
,
P. G.
Duynkerke
, and
H. J. J.
Jonker
, “
Large-eddy simulation: How large is large enough
?”
J. Atmos. Sci.
61
,
403
(
2004
).
15.
T.
Hartlep
,
A.
Tilgner
, and
F. H.
Busse
, “
Large scale structures in Rayleigh-Bénard convection at high Rayleigh numbers
,”
Phys. Rev. Lett.
91
,
064501
(
2003
).
16.
S.
Kenjereš
and
K.
Hanjalić
, “
Numerical insight into flow structure in ultraturbulent thermal convection
,”
Phys. Rev. E
62
,
7987
(
2000
).
17.
R. M.
Kerr
, “
Energy budget in Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
87
,
244502
(
2001
).
You do not currently have access to this content.