We show that by considering only the deviation from equilibrium, significant computational savings can be obtained in Monte Carlo evaluations of the Boltzmann collision integral for flow problems in the small Mach number (Ma) limit. The benefits of this variance reduction approach include a significantly reduced statistical uncertainty when the deviation from equilibrium is small, and a flow-velocity signal-to-noise ratio that remains approximately constant with Ma in the Ma1 limit. This results in stochastic Boltzmann solution methods whose computational cost for a given signal-to-noise ratio is essentially independent of Ma for Ma1; our numerical implementation demonstrates this for Mach numbers as low as 105. These features are in sharp contrast to current particle-based simulation techniques in which statistical sampling leads to computational cost that is proportional to Ma2, making calculations at small Ma very expensive.

1.
W. G.
Vincenti
and
C. H.
Kruger
,
Introduction to Physical Gas Dynamics
(
Krieger
, Florida,
1965
).
2.
C.
Cercignani
,
The Boltzmann Equation and its Applications
(
Springer
, New York,
1988
).
3.
C. M.
Ho
and
Y. C.
Tai
, “
Micro-electro-mechanical systems (MEMS) and fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
579
(
1998
).
4.
G. E.
Karniadakis
and
A.
Beskok
,
Microflows: Fundamentals and Simulation
(
Springer
, Berlin,
2001
).
5.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
, Oxford,
1994
).
6.
F. J.
Alexander
and
A. L.
Garcia
, “
The direct simulation Monte Carlo method
,”
Comput. Phys.
11
,
588
(
1997
).
7.
W.
Wagner
, “
A convergence proof for bird’s direct simulation Monte Carlo method for the Boltzmann equation
,”
J. Stat. Phys.
66
,
1011
(
1992
).
8.
N. G.
Hadjiconstantinou
,
A. L.
Garcia
,
M. Z.
Bazant
, and
G.
He
, “
Statistical error in particle simulations of hydrodynamic phenomena
,”
J. Comput. Phys.
187
,
274
(
2003
).
9.
Z.
Tan
and
P. L.
Varghese
, “
The Δ-ϵ method for the Boltzmann equation
,”
J. Comput. Phys.
110
,
327
(
1994
).
10.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
, Cambridge,
1992
).
11.
F. G.
Cheremisin
, “
Solving the Boltzmann equation in the case of passing to the hydro-dynamic flow regime
,”
Dokl. Phys.
45
,
401
(
2000
).
12.
T.
Ohwada
,
Y.
Sone
, and
K.
Aoki
, “
Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
1
,
2042
(
1989
).
13.
D. W.
Scott
,
Multivariate Density Estimation: Theory Practice and Visualization
(
Wiley
, New York,
1992
).
14.
Encyclopedia of Statistical Sciences
, edited by
S.
Kotz
,
N. L.
Johnson
, and
C. B.
Read
(
Wiley
, New York,
1982
), Vol.
2
.
15.
S. M.
Yen
, “
Numerical solution of the nonlinear Boltzmann equation for nonequilibrium gas flow problems
,”
Annu. Rev. Fluid Mech.
16
,
67
(
1984
).
16.
A. E.
Beylich
, “
Solving the kinetic equation for all Knudsen numbers
,”
Phys. Fluids
12
,
444
(
2000
).
17.
V. V.
Aristov
,
Direct Methods for Solving the Boltzman Equation and Study of Nonequilibrium Flows
(
Kluwer
, Dordrecht,
2001
).
18.
F.
Filbet
and
G.
Russo
, “
High order numerical methods for the space non-homogeneous Boltzmann equation
,”
J. Comput. Phys.
186
,
457
(
2003
).
19.
S.
Takata
,
Y.
Sone
, and
K.
Aoki
, “
Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
5
,
716
(
1993
).
20.
C.
Cercignani
and
A.
Daneri
, “
Flow of a rarefied gas between two parallel plates
,”
J. Appl. Phys.
34
,
3509
(
1963
).
You do not currently have access to this content.