Large-eddy simulations are performed to investigate turbulent flows through 90° pipe bends that feature unsteady flow separation, unstable shear layers, and an oscillation of the Dean vortices. Single bends with curvature radii of one- and three-pipe diameters are considered at the Reynolds number range 5000–27 000. The numerically computed distributions of the time-averaged velocities, Reynolds stress components, and power spectra of the velocities are validated by comparison with particle image velocimetry measurements. The power spectra of the overall forces onto the pipe walls are determined. The spectra exhibit a distinct peak in the high frequency range that is ascribed to vortex shedding at the inner side of the bends and shear layer instability. At the largest Reynolds number the spectra also exhibit an oscillation at a frequency much lower than that commonly observed at vortex shedding from separation. It turns out that the associated flow pattern is similar to the swirl switching phenomenon earlier found in experimental studies with which the present results are compared. It is shown that the low frequency oscillation perceptible on the entire wall is caused by the two Dean vortices whose strength vary in time and which as such alternately dominate the flow field.

1.
M. J.
Tunstall
and
J. K.
Harvey
, “
On the effect of a sharp bend in a fully developed turbulent pipe flow
,”
J. Fluid Mech.
34
,
595
(
1968
).
2.
S. A.
Berger
,
L.
Talbot
, and
L.-S.
Yao
, “
Flow in curved pipes
,”
Annu. Rev. Fluid Mech.
15
,
461
(
1983
).
3.
K.
Nandakumar
and
J. H.
Masliyah
, “
Swirling flow and heat transfer in coiled and twisted pipes
,” in
Advances in Transport Processes
, edited by
A. S.
Mujumdar
and
R. A.
Mashelkar
(
Wiley Eastern Limited
, New Delhi,
1986
), Vol.
4
, pp.
49
112
.
4.
H.
Ito
, “
Flow in curved pipes
,”
JSME Int. J.
30
,
543
(
1987
).
5.
S. A.
Berger
, “
Flow and heat transfer in curved pipes and tubes
,”
Proceedings of the 29th AIAA Aerospace Sciences Meeting
, Reno, NV,
1991
.
6.
A. J.
Ward-Smith
,
Internal Fluid Flow, The Fluid Dynamics of Flow in Pipes and Ducts
(
Clarendon
, Oxford,
1980
).
7.
F.
Rütten
,
M.
Meinke
, and
W.
Schröder
, “
Large-eddy simulations of 90°-pipe bend flows
,”
J. Turbul.
2
,
003
(
2001
).
8.
R. S.
Rogallo
and
P.
Moin
, “
Numerical simulation of turbulent flows
,”
Annu. Rev. Fluid Mech.
16
,
99
(
1984
).
9.
M.
Meinke
,
W.
Schröder
,
E.
Krause
, and
Th.
Rister
, “
A comparison of second- and sixth-order methods for large-eddy simulations
,”
Comput. Fluids
31
,
695
(
2002
).
10.
C.
Fureby
and
F. F.
Grinstein
, “
Monotonically integrated large eddy simulation of free shear flows
,”
AIAA J.
37
,
544
(
1999
).
11.
E.
Garnier
,
M.
Mossi
,
P.
Sagaut
,
P.
Comte
, and
M.
Deville
, “
On the use of shock-capturing schemes for large-eddy simulation
,”
J. Comput. Phys.
153
,
273
(
1999
).
12.
R. J.
LeVeque
,
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
, Cambridge,
2002
).
13.
M.-S.
Liou
and
Ch. J.
Steffen
, Jr.
, “
A new flux splitting scheme
,”
J. Comput. Phys.
107
,
23
(
1993
).
14.
H.
Choi
and
P.
Moin
, “
Effects of the computational time step on numerical solutions of turbulent flow
,”
J. Comput. Phys.
113
,
1
(
1994
).
15.
A.
Schvorak
, “
Grobstruktursimulation kompressibler turbulenter Strö-mungen durch Rohre mit veränderlichem Querschnitt
,” Ph.D. thesis,
Aerodynamisches Institut
, RWTH Aachen,
1998
.
16.
T. J.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
(
1992
).
17.
F.
Rütten
,
Large-Eddy Simulations of Pipe Bend Flows
(
Shaker
, Aachen,
2003
).
18.
F.
Durst
,
J.
Jovanović
, and
J.
Sender
, “
LDA measurements in the near-wall region of a turbulent pipe flow
,”
J. Fluid Mech.
295
,
305
(
1995
).
19.
F.
Unger
, “
Numerische Simulation turbulenter Rohrströmungen
,” Ph.D. thesis,
Lehrstuhl für Fluidmechanik, Technische Universität München
,
1994
.
20.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
(
1987
).
21.
M.
Meinke
,
A.
Abdelfattah
,
C.
Schulz
, and
T.
Rister
, “
Simulation of turbulent flows for complex geometries
,”
Finite Volumes for Complex Applications
(
Hermes
, Paris,
1996
), pp.
99
114
.
22.
Ch.
Brücker
, “
A time-recording DPIV-study of the swirl switching effect in a 90° bend flow
,”
Proceedings of the Eighth International Symposium on Flow Visualization
,
Sorento
, Italy,
1998
.
23.
C.-M.
Ho
and
P.
Huerre
, “
Perturbed free shear layers
,”
Annu. Rev. Fluid Mech.
16
,
365
(
1984
).
24.
A.
Savitzky
and
M. J. E.
Golay
, “
Smoothing and differentiation of data by simplified least squares procedures
,”
Anal. Chem.
36
,
1627
(
1964
).
25.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in FORTRAN 77
, 2nd ed. (
Cambridge University Press
, Cambridge,
1999
).
You do not currently have access to this content.