Using the inverse spectral theory of the nonlinear Schrödinger (NLS) equation we correlate the development of rogue waves in oceanic sea states characterized by the Joint North Sea Wave Project (JONSWAP) spectrum with the proximity to homoclinic solutions of the NLS equation. We find in numerical simulations of the NLS equation that rogue waves develop for JONSWAP initial data that are “near” NLS homoclinic data, while rogue waves do not occur for JONSWAP data that are “far” from NLS homoclinic data. We show the nonlinear spectral decomposition provides a simple criterium for predicting the occurrence and strength of rogue waves.
REFERENCES
1.
Rogue Waves 2000
, edited by M.
Olagnon
and G.
Athanassoulis
(Ifremer
, France, 2001
), Vol. 32
.2.
C.
Kharif
and E.
Pelinovsky
, “Physical mechanisms of the rogue wave phenomenon
,” Eur. J. Mech. A/Solids
22
, 603
(2003
).3.
M.
Ablowitz
and H.
Segur
, Solitons and the Inverse Scattering Transform
(SIAM
, Philadelphia, 1981
).4.
A.
Osborne
, M.
Onorato
, and M.
Serio
, “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains
,” Phys. Lett. A
275
, 386
(2000
).5.
A.
Calini
and C.
Schober
, “Homoclinic chaos increases the likelihood of rogue waves
,” Phys. Lett. A
298
, 335
(2002
).6.
K.
Trulsen
and K.
Dysthe
, “A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water
,” Wave Motion
24
, 281
(1996
).7.
K.
Trulsen
, I.
Kliakhandler
, K.
Dysthe
, and M.
Velarde
, “On weakly nonlinear modulations of waves on deep water
,” Phys. Fluids
12
, 2432
(2000
).8.
M.
Ablowitz
, J.
Hammack
, D.
Henderson
, and C.
Schober
, “Long time dynamics of the modulational instability of deep water waves
,” Physica D
152–153
, 416
(2001
).9.
M.
Onorato
, A.
Osborne
, M.
Serio
, and S.
Bertone
, “Freak wave in random oceanic sea states
,” Phys. Rev. Lett.
86
, 5831
(2001
).10.
N.
Ercolani
, M. G.
Forest
, and D.
McLaughlin
, “Geometry of the modulational instability III. Homoclinic orbits
,” Physica D
43
, 349
(1990
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.