The method of regularized Stokeslets is a Lagrangian method for computing Stokes flow driven by forces distributed at material points in a fluid. It is based on the superposition of exact solutions of the Stokes equations when forces are given by a cutoff function. We present this method in three dimensions, along with an analysis of its accuracy and performance on the model problems of flow past a sphere and the steady state rotation of rigid helical tubes. Predicted swimming speeds for various helical geometries are compared with experimental data for motile spirochetes. In addition, the regularized Stokeslet method is readily implemented in conjunction with an immersed boundary representation of an elastic helix that incorporates passive elastic properties as well as mechanisms of internal force generation.

1.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
, Cambridge,
1992
).
2.
M. J.
Lighthill
, “
Flagellar hydrodynamics
,”
SIAM Rev.
18
,
161
(
1976
).
3.
J. B.
Keller
and
S. I.
Rubinow
, “
Slender-body theory for slow viscous flow
,”
J. Fluid Mech.
75
,
705
(
1976
).
4.
M.
Shelley
and
T.
Ueda
, “
The Stokesian hydrodynamics of flexing, stretching filaments
,”
Physica D
146
,
221
(
2000
).
5.
R.
Cortez
, “
The method of regularized Stokeslets
,”
SIAM J. Sci. Comput. (USA)
23
,
1204
(
2001
).
6.
S. C.
Holt
, “
Anatomy and chemistry of the spirochetes
,”
Microbiol. Rev.
42
,
114
(
1978
).
7.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numerica
11
,
479
(
2002
).
8.
J. T.
Beale
and
A.
Majda
, “
High order accurate vortex methods with explicit velocity kernels
,”
J. Comput. Phys.
58
,
188
(
1985
).
9.
O. H.
Hald
, “
Convergence of vortex methods
,” in
Vortex Methods and Vortex Motion
, edited by
K. E.
Gustafson
and
J. A.
Sethian
(
SIAM
, Philadelphia, PA,
1991
), pp.
33
–58.
10.
P.
Degond
and
S.
Mass-Gallic
, “
The weighted particle method for convection-diffusion equations I: the case of isotropic viscosity
,”
Math. Comput.
53
,
485
(
1989
).
11.
C.
Pozrikidis
,
Numerical Computation in Science and Engineering
(
Oxford University Press
, New York,
1998
).
12.
J. T.
Beale
, “
A convergent boundary integral method for three-dimensional water waves
,”
Math. Comput.
70
,
977
(
2001
).
13.
G. K.
Batchelor
,
An Introduction To Fluid Dynamics
(
Cambridge University Press
, Cambridge,
1967
).
14.
E.
Purcell
, “
The efficiency of propulsion by a rotating flagellum
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
11307
(
1997
).
15.
S.
Goldstein
and
N.
Charon
, “
Multiple-exposure photographic analysis of a motile spirochete
,”
Proc. Natl. Acad. Sci. U.S.A.
87
,
4895
(
1990
).
16.
S.
Goldstein
,
K.
Buttle
, and
N.
Charon
, “
Structural analysis of the Leptospiraceae and Borrelia burgdorferi by high-voltage electron microscopy
,”
J. Bacteriol.
178
,
6539
(
1996
).
17.
H. C.
Berg
, “
How spirochetes may swim
,”
J. Theor. Biol.
56
,
269
(
1976
).
18.
N. W.
Charon
,
C. W.
Lawrence
, and
S.
O’ Brien
, “
Movement of antibody-coated latex beads attached to the spirochete Leptospira interrogans
,”
Proc. Natl. Acad. Sci. U.S.A.
78
,
7166
(
1981
).
19.
M. J.
Lighthill
, “
Helical distributions of Stokeslets
,”
J. Eng. Math.
30
,
35
(
1996
).
20.
S.
Goldstein
(private communication).
21.
R.
Dillon
and
L.
Fauci
, “
An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating
,”
J. Theor. Biol.
207
,
415
(
2000
).
22.
R.
Dillon
,
L.
Fauci
, and
C.
Omoto
, “
Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility
,”
Dynamics of Continuous, Discrete, and Impulsive Systems, Series A
10
,
745
(
2003
).
23.
S.
Lim
and
C.
Peskin
, “
Simulations of the whirling instability by the immersed boundary method
,”
SIAM J. Sci. Comput. (USA)
25
,
2066
(
2004
).
24.
A. A.
Medovikov
, “
High order explicit methods for parabolic equations
,”
BIT
38
,
372
(
1998
).
You do not currently have access to this content.