One-dimensional turbulence (ODT), a method for one-dimensional stochastic simulation of turbulent flow, is generalized to incorporate variable-density effects. This formulation is used to investigate variable-density effects in planar mixing layers. Computed results are compared to direct numerical simulations of temporally developing mixing layers and to measurements performed in spatially developing mixing layers. Dependencies of mean flow structure and fluctuation statistics on the free-stream density ratio s are examined, including s values beyond the range of previous experimental and computational studies. For temporally developing mixing layers, the previously noted decrease of the layer growth rate as s deviates from unity is reproduced. For spatially developing mixing layers, dependence on s is sensitive to whether the high-speed or the low-speed stream is denser; by convention, the latter case corresponds to s>1. Experimental results indicating that layer growth is an increasing function of s have previously been interpreted on the basis of models that imply the continuation of this monotonic trend for all s. ODT reproduces the observed trend within the experimentally accessible range, but predicts a reversal of the trend slightly beyond that range and a subsequent decrease of the growth rate as s increases. This and related results suggest a closer analogy between the behaviors of temporally and spatially developing mixing layers than has previously been recognized. An experimental test of the predicted trend reversal in spatially developing mixing layers is proposed.

1.
W. W.
Liou
and
P. J.
Morris
, “
Weakly nonlinear models for turbulent mixing in a plane mixing layer
,”
Phys. Fluids A
4
,
2798
(
1992
).
2.
P. J.
Morris
,
M. G.
Giridharan
, and
G. M.
Lilley
, “
On the turbulent mixing of compressible free shear layers
,”
Proc. R. Soc. London, Ser. A
431
,
219
(
1990
).
3.
K.
Viswanathan
and
P. J.
Morris
, “
Predictions of turbulent mixing in axisymmetric compressible shear layers
,”
AIAA J.
30
,
1529
(
1992
).
4.
J. C.
Sautet
and
D.
Stepowski
, “
Dynamic behavior of variable-density, turbulent jets in their near development fields
,”
Phys. Fluids
7
,
2799
(
1995
).
5.
T.
Djeridane
,
M.
Amielh
,
F.
Anselmet
, and
L.
Fulachier
, “
Velocity turbulence properties in the near-field region of axisymmetric variable density jets
,”
Phys. Fluids
8
,
1614
(
1996
).
6.
T.-H.
Shih
,
J. L.
Lumley
, and
J.
Janicka
, “
Second-order modeling of a variable-density mixing layer
,”
J. Fluid Mech.
180
,
93
(
1987
).
7.
P.
Chassaing
,
G.
Harran
, and
L.
Joly
, “
Density fluctuation correlations in free turbulent binary mixing
,”
J. Fluid Mech.
279
,
239
(
1994
).
8.
J. P. H.
Sanders
,
B.
Sarh
, and
I.
Gokalp
, “
Variable density effects in axisymmetric isothermal turbulent jets: A comparison between a first- and a second-order turbulence model
,”
Int. J. Heat Mass Transfer
40
,
823
(
1997
).
9.
G. L.
Brown
and
A.
Roshko
, “
On density effects and large structure in turbulent mixing layers
,”
J. Fluid Mech.
64
,
775
(
1974
).
10.
J.
Chomiak
and
J. R.
Nisbet
, “
Modeling variable density effects in turbulent flames—some basic considerations
,”
Combust. Flame
102
,
371
(
1995
).
11.
A. R.
Kerstein
, “
One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows
,”
J. Fluid Mech.
392
,
277
(
1999
).
12.
A. R.
Kerstein
, “
One-dimensional turbulence—Part 2. Staircases in double-diffusive convection
,”
Dyn. Atmos. Oceans
30
,
25
(
1999
).
13.
T. D.
Dreeben
and
A. R.
Kerstein
, “
Simulation of vertical slot convection using ‘one-dimensional turbulence
,’ ”
Int. J. Heat Mass Transfer
43
,
3823
(
2000
).
14.
S.
Wunsch
and
A. R.
Kerstein
, “
A model for layer formation in stably stratified turbulence
,”
Phys. Fluids
13
,
702
(
2001
).
15.
S.
Wunsch
, “
Stochastic simulations of buoyancy-reversal experiments
,”
Phys. Fluids
15
,
1442
(
2003
).
16.
T.
Echekki
,
A. R.
Kerstein
,
J.-Y.
Chen
, and
T. D
Dreeben
, “ ‘
One-dimensional turbulence’ simulation of turbulent jet diffusion flames: model formulation and illustrative applications
,”
Combust. Flame
125
,
1083
(
2001
).
17.
J. C.
Hewson
and
A. R.
Kerstein
, “
Stochastic simulation of transport and chemical kinetics in turbulent COH2N2 flames
,”
Combust. Theory Modell.
5
,
669
(
2001
).
18.
M. C.
Soteriou
and
A. F.
Ghoniem
, “
Effects of the free-stream density ratio on free and forced spatially developing mixing layers
,”
Phys. Fluids
7
,
2036
(
1995
).
19.
P. E.
Dimotakis
, “
Two-dimensional shear-layer entrainment
,”
AIAA J.
24
,
1791
(
1986
).
20.
P.
Chassaing
,
R. A.
Antonia
,
F.
Anselmet
,
L.
Joly
, and
S.
Sarkar
,
Variable Density Fluid Turbulence
(
Kluwer
, Dordrecht,
2002
).
21.
R. E.
Breidenthal
, “
Sonic eddy—a model for compressible turbulence
,”
AIAA J.
30
,
101
(
1992
).
22.
A. R.
Kerstein
,
W. T.
Ashurst
,
S.
Wunsch
, and
V.
Nilsen
, “
One-dimensional turbulence: vector formulation and application to free shear flows
,”
J. Fluid Mech.
447
,
85
(
2001
).
23.
A. R.
Kerstein
, “
Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields
,”
J. Fluid Mech.
231
,
361
(
1991
).
24.
F. A.
Williams
,
Combustion Theory
(
Benjamin/Cummings
, Menlo Park,
1985
).
25.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
(
Wiley
, New York,
1960
).
26.
I. F.
Golubev
,
Viscosity of Gases and Gas Mixtures: A Handbook
(
Israel Program for Scientific Translations
, Jerusalem,
1970
).
27.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
, New York,
1954
).
28.
J. E.
Broadwell
and
M. G.
Mungal
, “
Large-scale structures and molecular mixing
,”
Phys. Fluids A
3
,
1193
(
1991
).
29.
M. M.
Rogers
and
R. D.
Moser
, “
Direct simulation of a self-similar turbulent mixing layer
,”
Phys. Fluids
6
,
903
(
1994
).
30.
C.
Pantano
and
S.
Sarkar
, “
A study of compressibility effects in the high-speed turbulent shear layer using direct simulation
,”
J. Fluid Mech.
431
,
329
(
2002
).
31.
A. W.
Vreman
,
N. D.
Sandham
, and
K. H.
Luo
, “
Compressible mixing layer growth rate and turbulence characteristics
,”
J. Fluid Mech.
320
,
235
(
1996
).
32.
G.
Pawlak
and
L.
Armi
, “
Vortex dynamics in a spatially accelerating shear layer
,”
J. Fluid Mech.
376
,
1
(
1998
).
33.
M.
Van Dyke
,
An Album of Fluid Motion
(
Parabolic
, Stanford,
1982
).
34.
J. D.
Ramshaw
, “
Simple model for mixing at accelerated fluid interfaces with shear and compression
,”
Phys. Rev. E
61
,
5339
(
2000
).
35.
G. L.
Brown
, “
The entrainment and large structure in turbulent mixing layers
,”
Proceedings of Fifth Australasian Conf. Hydraul. Fluid Mech.
,
352
(
1974
).
36.
P. E.
Dimotakis
, “
Turbulent free shear layer mixing and combustion
,”
Prog. Astronaut. Aeronaut.
137
,
265
(
1991
).
37.
O. M.
Knio
and
A. F.
Ghoniem
, “
The three-dimensional structure of periodic vorticity layers under non-symmetric conditions
,”
J. Fluid Mech.
243
,
353
(
1992
).
38.
A. B.
Cortesi
,
G.
Yadigaroglu
, and
S.
Banerjee
, “
Numerical investigation of the formation of three-dimensional structures in stably-stratified mixing layers
,”
Phys. Fluids
10
,
1449
(
1998
).
39.
A. R.
Kerstein
and
T. D.
Dreeben
, “
Prediction of turbulent free shear flow statistics using a simple model
,”
Phys. Fluids
12
,
418
(
2000
).
40.
J. H.
Konrad
, “
An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions
,” Ph.D. thesis,
Caltech
;
Project SQUID Tech. Rep. No. CIT-8-PU,
1976
.
41.
L. M.
Pickett
and
J. B.
Ghandhi
, “
Passive scalar mixing of a planar shear layer with laminar and turbulent inlet conditions
,”
Phys. Fluids
14
,
985
(
2002
).
42.
M. G.
Mungal
and
P. E.
Dimotakis
, “
Mixing and combustion with low heat release in a turbulent shear layer
,”
J. Fluid Mech.
148
,
349
(
1984
).
43.
A. B.
Cortesi
,
B. L.
Smith
,
B.
Sigg
, and
S.
Banerjee
, “
Numerical investigation of the scalar probability density function distribution in neutral and stably stratified mixing layers
,”
Phys. Fluids
13
,
927
(
2001
).
44.
W. T.
Ashurst
,
A. R.
Kerstein
,
L. M.
Pickett
, and
J. B.
Ghandhi
, “
Passive scalar mixing in a spatially developing shear layer: Comparison of one-dimensional turbulence simulations with experimental results
,”
Phys. Fluids
15
,
579
(
2003
).
45.
G.
Lu
and
S. K.
Lele
, “
On the density ratio effect on the growth rate of a compressible mixing layer
,”
Phys. Fluids
6
,
1073
(
1994
).
46.
N. D.
Sandham
and
W. C.
Reynolds
, “
Compressible mixing layer: Linear theory and direct simulation
,”
AIAA J.
28
,
618
(
1995
).
47.
V.
Yang
, “
Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems
,”
Proc. Combust. Inst.
28
,
925
(
2000
).
48.
R. E.
Breidenthal
, “
Entrainment at thin stratified interfaces: The effects of Schmidt, Richardson, and Reynolds numbers
,”
Phys. Fluids A
4
,
2141
(
1992
).
49.
R. C.
Schmidt
,
A. R.
Kerstein
,
S.
Wunsch
, and
V.
Nilsen
, “
Near-wall LES closure based on one-dimensional turbulence modeling
,”
J. Comput. Phys.
186
,
317
(
2003
).
50.
I.
Wygnanski
and
H. E.
Fiedler
, “
The two-dimensional mixing region
,”
J. Fluid Mech.
41
,
327
(
1970
).
You do not currently have access to this content.