A scale-dependent dynamic subgrid model based on Lagrangian time averaging is proposed and tested in large eddy simulations (LES) of high-Reynolds number boundary layer flows over homogeneous and heterogeneous rough surfaces. The model is based on the Lagrangian dynamic Smagorinsky model in which required averages are accumulated in time, following fluid trajectories of the resolved velocity field. The model allows for scale dependence of the coefficient by including a second test-filtering operation to determine how the coefficient changes as a function of scale. The model also uses the empirical observation that when scale dependence occurs (such as when the filter scale approaches the limits of the inertial range), the classic dynamic model yields the coefficient value appropriate for the test-filter scale. Validation tests in LES of high Reynolds number, rough wall, boundary layer flow are performed at various resolutions. Results are compared with other eddy-viscosity subgrid-scale models. Unlike the Smagorinsky–Lilly model with wall-damping (which is overdissipative) or the scale-invariant dynamic model (which is underdissipative), the scale-dependent Lagrangian dynamic model is shown to have good dissipation characteristics. The model is also tested against detailed atmospheric boundary layer data that include measurements of the response of the flow to abrupt transitions in wall roughness. For such flows over variable surfaces, the plane-averaged version of the dynamic model is not appropriate and the Lagrangian averaging is desirable. The simulated wall stress overshoot and relaxation after a jump in surface roughness and the velocity profiles at several downstream distances from the jump are compared to the experimental data. Results show that the dynamic Smagorinsky coefficient close to the wall is very sensitive to the underlying local surface roughness, thus justifying the use of the Lagrangian formulation. In addition, the Lagrangian formulation reproduces experimental data more accurately than the planar-averaged formulation in simulations over heterogeneous rough walls.

1.
J. W.
Deardorff
, “
Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer
,”
Boundary-Layer Meteorol.
7
,
81
(
1974
).
2.
C.-H.
Moeng
, “
A large-eddy simulation for the study of planetary boundary layer turbulence
,”
J. Atmos. Sci.
41
,
2052
(
1984
).
3.
C.-H.
Moeng
and
J. C.
Wyngaard
, “
Statistics of conservative scalars in the convective boundary layer
,”
J. Atmos. Sci.
41
,
3161
(
1984
).
4.
R. H.
Shaw
and
U.
Schumann
, “
Large-eddy simulation of turbulent flow above and within a forest
,”
Boundary-Layer Meteorol.
61
,
47
(
1992
).
5.
P. J.
Mason
, “
Large-eddy simulation: A critical review of the technique
,”
Q. J. R. Meteorol. Soc.
120
,
1
(
1994
).
6.
B.
Kosović
, “
Subgrid-scale modeling for the large-eddy simulation of high-Reynolds-number boundary layers
,”
J. Fluid Mech.
336
,
151
(
1997
).
7.
J. D.
Albertson
and
M. B.
Parlange
, “
Natural integration of scalar fluxes from complex terrain
,”
Adv. Water Resour.
23
,
239
(
1999
).
8.
J. D.
Albertson
and
M. B.
Parlange
, “
Surface length-scales and shear stress: implications for land-atmosphere interaction over complex terrain
,”
Water Resour. Res.
35
,
2121
(
1999
).
9.
M.
Lesieur
and
O.
Métais
, “
New trends in large eddy simulations of turbulence
,”
Annu. Rev. Fluid Mech.
28
,
45
(
1996
).
10.
U.
Piomelli
, “
Large-eddy simulation: achievements and challenges
,”
Prog. Aerosp. Sci.
35
,
335
(
1999
).
11.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows
, 2nd ed. (
Springer
, Berlin,
2003
).
12.
J. S.
Smagorinsky
, “
General circulation experiments with the primitive equations: I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
(
1963
).
13.
J.
Bardina
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Improved subgrid-scale models for large-eddy simulation
,”
AIAA Pap.
80
,
1357
(
1980
).
14.
B.
Vreman
,
B.
Geurts
, and
H.
Kuerten
, “
On the formulation of the dynamic mixed subgrid-scale model
,”
Phys. Fluids
6
,
4057
(
1994
).
15.
F.
Sarghini
,
U.
Piomelli
, and
E.
Balaras
, “
Scale-similar models for large-eddy simulations
,”
Phys. Fluids
11
,
1596
(
1999
).
16.
R.
Anderson
and
C.
Meneveau
, “
Effects of the similarity model in finite-difference LES of isotropic turbulence using a Lagrangian dynamic mixed model
,”
Flow, Turbul. Combust.
62
,
201
(
1999
).
17.
C.
Higgins
,
M.
Parlange
, and
C.
Meneveau
, “
Alignment trends of velocity gradients and subgrid-scale fluxes in the turbulent atmospheric boundary layer
,”
Boundary-Layer Meteorol.
109
,
59
(
2003
).
18.
H. S.
Kang
,
S.
Chester
, and
C.
Meneveau
, “
Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation
,”
J. Fluid Mech.
480
,
129
(
2003
).
19.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
20.
M.
Germano
, “
Turbulence: the filtering approach
,”
J. Fluid Mech.
238
,
325
(
1992
).
21.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
(
2000
).
22.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
(
2000
).
23.
J.
Kleissl
,
C.
Meneveau
, and
M. B.
Parlange
, “
On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer
,”
J. Atmos. Sci.
60
,
2372
(
2003
).
24.
C.
Meneveau
,
T.
Lund
, and
W.
Cabot
, “
A Lagrangian dynamic subgrid-scale model of turbulence
,”
J. Fluid Mech.
319
,
353
(
1996
).
25.
S.
Ghosal
,
T. S.
Lund
,
P.
Moin
, and
K.
Akselvoll
, “
A dynamic localization model for large eddy simulation of turbulent flows
,”
J. Fluid Mech.
86
,
229
(
1995
).
26.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
, Cambridge, UK,
2000
).
27.
D. C.
Haworth
and
K.
Jansen
, “
Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines
,”
Comput. Fluids
29
,
493
(
2000
).
28.
V.
Armenio
and
U.
Piomelli
, “
A Lagrangian mixed subgrid-scale model in generalized coordinates
,”
Flow, Turbul. Combust.
65
,
51
(
2000
).
29.
L.
Blin
,
A.
Hadjadj
, and
L.
Vervisch
, “
Large eddy simulation of turbulent flows in reversing systems
,”
J. Turbul.
4
,
1
(
2003
).
30.
M.
Tsubokura
,
T.
Kobayashi
,
N.
Taniguchi
, and
W. P.
Jones
, “
A numerical study on the eddy structures of impinging jets excited at the inlet
,”
Int. J. Heat Fluid Flow
24
,
500
(
2003
).
31.
D. K.
Lilly
, “
The representation of small scale turbulence in numerical simulation experiments
,”
Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences
(
IBM
, Yorktown Heights, NY, 1967), p.
195
.
32.
P. J.
Mason
and
D. J.
Thomson
, “
Stochastic backscatter in large-eddy simulations of boundary layers
,”
J. Fluid Mech.
242
,
51
(
1992
).
33.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids A
4
,
633
(
1992
).
34.
S. B.
Pope
, “
Ten questions concerning the large-eddy simulation of turbulent flows
,”
New J. Phys.
6
,
35
(
2004
).
35.
C.
Meneveau
and
T.
Lund
, “
The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence
,”
Phys. Fluids
9
,
3932
(
1997
).
36.
E.
Bou-Zeid
,
C.
Meneveau
, and
M. B.
Parlange
, “
Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness
,”
Water Resour. Res.
40
,
W02505
(
2004
).
37.
U.
Piomelli
and
J.
Liu
, “
Large-eddy simulation of rotating channel flows using a localized dynamic model
,”
Phys. Fluids
7
,
839
(
1995
).
38.
C.
Meneveau
and
T.
Lund
, “
On the Lagrangian nature of the turbulence energy cascade
,”
Phys. Fluids
6
,
2820
(
1994
).
39.
S. A.
Orszag
and
Y. H.
Pao
, “
Numerical computation of turbulent shear flows
,”
Adv. Geophys.
18
,
224
(
1974
).
40.
S. A.
Orszag
, “
Transform method for calculation of vector coupled sums: application to the spectral form of the vorticity equation
,”
J. Atmos. Sci.
27
,
890
(
1970
).
41.
J. W.
Deardorff
, “
A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers
,”
J. Fluid Mech.
41
,
453
(
1970
).
42.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
34
,
349
(
2002
).
43.
A.
Andren
,
A. R.
Brown
,
J.
Graf
,
P. J.
Mason
,
C.-H.
Moeng
,
F. T. M.
Nieuwstadt
, and
U.
Schumann
, “
Large-eddy simulation of a neutrally stratified boundary layer: a comparison of four computer codes
,”
Q. J. R. Meteorol. Soc.
120
,
1457
(
1994
).
44.
B. A.
Kader
and
A. M.
Yaglom
, “
Spectra and correlation functions of surface layer atmospheric turbulence in unstable thermal stratification
,” in
Turbulence and Coherent Structures
, edited by
O.
Métais
and
M.
Lesieur
(
Kluwer Academic
, Dordrecht,
1991
) pp.
387
412
.
45.
A. E.
Perry
,
K. L.
Lim
, and
S. M.
Henbest
, “
An experimental study of the turbulence structure in smooth- and rough-wall boundary layers
,”
J. Fluid Mech.
177
,
437
(
1987
).
46.
G. G.
Katul
,
C. R.
Chu
,
M. B.
Parlange
,
J. D.
Albertson
, and
T. A.
Ortenburger
, “
The low-wavenumber spectral characteristics of velocity and temperature in the atmospheric surface layer
,”
J. Geophys. Res.
100
,
14243
(
1995
).
47.
J. F.
Morrison
,
W.
Jiang
,
B. J.
McKeon
, and
A. J.
Smits
, “
Reynolds number dependence of streamwise velocity spectra in turbulent pipe flow
,”
Phys. Rev. Lett.
88
,
214501
(
2002
).
48.
T. B.
Nickels
and
I.
Marusic
, “
On the different contributions of coherent structures to the spectra of a turbulent round jet and a turbulent boundary layer
,”
J. Fluid Mech.
448
,
367
(
2001
).
49.
J. C.
Del Alamo
,
J.
Jimenez
,
P.
Zandonade
, and
M. D.
Moser
, “
Scaling of the energy spectra of turbulent channels
,”
J. Fluid Mech.
500
,
135
(
2004
).
50.
E. F.
Bradley
, “
A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness
,”
Q. J. R. Meteorol. Soc.
94
,
361
(
1968
).
51.
C. C.
Shir
, “
A numerical computation of air flow over a sudden change of surface roughness
,”
J. Atmos. Sci.
29
,
304
(
1972
).
52.
K. S.
Rao
,
J. C.
Wyngaard
, and
O. R.
Coté
, “
The structure of the two-dimensional internal boundary layer over a sudden change of surface roughness
,”
J. Atmos. Sci.
31
,
738
(
1974
).
53.
W. H.
Schofield
, “
Turbulent shear flows over a step-change in surface roughness
,”
J. Fluids Eng.
103
,
344
(
1981
).
54.
H. P.
Schmid
and
B.
Bünzli
, “
The influence of surface texture on the effective roughness length
,”
Q. J. R. Meteorol. Soc.
121
,
1
(
1995
).
55.
W.
Brutsaert
, “
Land-surface water vapor and sensible heat flux: Spatial variability, homogeneity, and measurement scale
,”
Water Resour. Res.
34
,
2433
(
1998
).
56.
P. J.
Mason
and
N. S.
Callen
, “
On the magnitude of subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow
,”
J. Fluid Mech.
162
,
439
(
1992
).
57.
H.
Schmidt
and
U.
Schumann
, “
Coherent structures of the convective boundary layer derived from large-eddy simulations
,”
J. Fluid Mech.
200
,
511
(
1989
).
You do not currently have access to this content.