In thermal convection, coherent flow structures emerge at high Rayleigh numbers as a result of intrinsic hydrodynamic instability and self-organization. They range from small-scale thermal plumes that are produced near both the top and the bottom boundaries to large-scale circulations across the entire convective volume. These flow structures exert viscous forces upon any boundary. Such forces will affect a boundary which is free to deform or change position. In our experiment, we study the dynamics of a free boundary that floats on the upper surface of a convective fluid. This seemingly passive boundary is subjected solely to viscous stress underneath. However, the boundary thermally insulates the fluid, modifying the bulk flow. As a consequence, the interaction between the free boundary and the convective flow results in a regular oscillation. We report here some aspects of the fluid dynamics and discuss possible links between our experiment and continental drift.

1.
See, for example,
E. L.
Koschmieder
,
Bénard Cell and Taylor Vortices
(
Cambridge University Press
, New York,
1993
).
2.
Lord
Rayleigh
, “
On convection currents in a horizontal layer of fluid when the higher temperature is on the under side
,”
Philos. Mag.
32
,
529
(
1916
).
3.
W. V.R.
Malkus
, “
Discrete transitions in turbulent convection
,”
Proc. R. Soc. London, Ser. A
225
,
185
(
1954
).
4.
R.
Krishnamurti
and
L. N.
Howard
, “
Large-scale flow generation in turbulent convection
,”
Proc. Natl. Acad. Sci. U.S.A.
78
,
4
(
1981
).
5.
M.
Sano
,
X.-Z.
Wu
, and
A.
Libchaber
, “
Turbulence in helium-gas free-convection
,”
Phys. Rev. A
40
,
6421
(
1989
).
6.
D. J.
Stevenson
, “
Mars’ core and magnetism
,”
Nature
412
,
214
(
2001
).
7.
M. T.
Zuber
, “
The crust and mantle of Mars
,”
Nature
412
,
220
(
2001
).
8.
D. L.
Turcotte
and
G.
Schubert
,
Geodynamics
(
Cambridge University Press
, New York,
2002
).
9.
M.
Gurnis
, “
Large-scale mantle convection and the aggregation and dispersal of supercontinents
,”
Nature
332
,
695
(
1988
).
10.
J. P.
Lowman
and
G. T.
Jarvis
, “
Mantle convection flow reversals due to continental collisions
,”
Geophys. Res. Lett.
20
,
2087
(
1993
).
11.
S. D.
King
,
J. P.
Lowman
, and
C. W.
Gable
, “
Episodic tectonic plate reorganizations driven by mantle convection
,”
Earth Planet. Sci. Lett.
203
,
83
(
2002
).
12.
J. X.
Mitrovica
, “
Plate-tectonics underpins supercontinent break-up
,”
Phys. World
7
,
35
(
1994
).
13.
F. H.
Busse
, “
A model of time-periodic mantle flow
,”
Geophys. J. R. Astron. Soc.
52
,
1
(
1978
).
14.
C.
Grigné
and
S.
Labrosse
, “
Effects of continents on earth cooling: Thermal blanketing and depletion in radioactive elements
,”
Geophys. Res. Lett.
28
,
2707
(
2001
).
15.
J. P.
Lowman
and
G. T.
Jarvis
, “
Mantle convection models of continental collision and breakup incorporating finite thickness plates
,”
Phys. Earth Planet. Inter.
88
,
53
(
1995
).
16.
P.
Davy
,
A.
Sornette
, and
D.
Sornette
, “
Some consequences of a proposed fractal nature of continental faulting
,”
Nature
348
,
56
(
1990
).
17.
R. W.
Griffiths
,
R. I.
Hackney
, and
R. D.
Vanderhilst
, “
A laboratory investigation of effects of trench migration on the descent of subducted slabs
,”
Earth Planet. Sci. Lett.
133
,
1
(
1995
).
18.
D. W.
Oldenburg
and
J. N.
Brune
, “
Ridge transform fault spreading pattern in freezing wax
,”
Science
178
,
301
(
1972
).
19.
R.
Ragnarsson
,
J. L.
Ford
,
C. D.
Santangelo
, and
E.
Bodenschatz
, “
Rifts in spreading wax layers
,”
Phys. Rev. Lett.
76
,
3456
(
1996
).
20.
J. A.
Whitehead
, “
Moving heaters as a model of continental drift
,”
Phys. Earth Planet. Inter.
5
,
199
(
1972
).
21.
J.
Zhang
and
A.
Libchaber
, “
Periodic boundary motion in thermal turbulence
,”
Phys. Rev. Lett.
84
,
4361
(
2000
).
22.
J. T.
Wilson
, “
Did the Atlantic close and then re-open
?”
Nature
211
,
676
(
1966
).
23.
B. A.
Grzybowski
,
N.
Bowden
,
F.
Arias
,
H.
Yang
, and
G. M.
Whitesides
, “
Modeling of menisci and capillary forces from the millimeter to the micrometer size range
,”
J. Phys. Chem. B
105
,
404
(
2001
).
24.
W. J.
Yang
,
Handbook of Flow Visualization
(
Taylor & Francis
, New York,
2001
), and references therein.
25.
G.
Zocchi
,
E.
Moses
, and
A.
Libchaber
, “
Coherent structures in turbulent convection, an experimental study
,”
Physica A
166
,
387
(
1990
).
26.
X.-L.
Qiu
and
P.
Tong
, “
Large-scale velocity structures in turbulent thermal convection
,”
Phys. Rev. E
64
,
036304
(
2001
).
27.
D. A.
Nield
, “
Surface tension and buoyancy effects in cellular convection
,”
J. Fluid Mech.
19
,
341
(
1964
).
28.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
), and references therein.
29.
D. L.
Anderson
, “
Hotspots, polar wander, Mesozoic convection and the geoid
,”
Nature
297
,
391
(
1982
).
30.
C.
Pinet
,
C.
Jaupart
,
J. C.
Mareschal
,
C.
Gariepy
,
G.
Bienfait
, and
R.
Lapointe
, “
Heat flow and structure of the lithosphere in the eastern Canadian shield
,”
J. Geophys. Res.
96
,
19941
(
1991
).
31.
X.-L.
Qiu
,
X.-D.
Shang
,
P.
Tong
, and
K.-Q.
Xia
, “
Velocity oscillations in turbulent Rayleigh-Bénard convection
,”
Phys. Fluids
16
,
412
(
2004
).
32.
S.
Cioni
,
S.
Ciliberto
and
J.
Sommeria
, “
Strongly turbulent Rayleigh-Bénard convection in mercury: comparison with results at moderate Prandtl number
,”
J. Fluid Mech.
335
,
111
(
1997
).
33.
S.
Grossmann
and
D.
Lohse
, “
Scaling in thermal convection: A unifying theory
,”
J. Fluid Mech.
407
,
27
(
2000
);
S.
Grossmann
and
D.
Lohse
, “
Thermal convection for large Prandtl number
,”
Phys. Rev. Lett.
86
,
3316
(
2001
).
[PubMed]
34.
S.
Lam
,
X.-D.
Shang
,
S.-Q.
Zhou
, and
K.-Q.
Xia
, “
Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection
,”
Phys. Rev. E
65
,
066306
(
2002
). (Note: The Reynolds number for the large-scale flow is found as Re=1.1Ra0.43Pr0.76. The experiment is carried out at Prandtl numbers between 6 and 102.7.)
35.
S.
Ashkenazi
and
V.
Steinberg
, “
High Rayleigh number turbulent convection in a gas near the gas-liquid critical point
,”
Phys. Rev. Lett.
83
,
3641
(
1999
). (Note: This experiment covers 1<Pr<93 and 109<Ra<1014. They found a scaling: Re=2.6Ra0.43Pr0.75.)
36.
W.
Feller
,
An Introduction to Probability Theory and Its Applications
, Vol.
1
(
Wiley
, New York,
1968
).
37.
G.
Ahlers
and
X.
Xu
, “
Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
86
,
3320
(
2001
).
38.
K.-Q.
Xia
,
S.
Lam
, and
S.-Q.
Zhou
, “
Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
88
,
064501
(
2002
).
39.
R.
Peltier
and
L. P.
Solheim
, “
Mantle phase-transitions and layered chaotic convection
,”
Phys. Rev. Lett.
19
,
321
(
1992
).
40.
L.
Wen
and
D. L.
Anderson
, “
Layered mantle convection: A model for geoid and topography
,”
Earth Planet. Sci. Lett.
146
,
367
(
1997
).
41.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
, Cambridge, MA,
1972
).
You do not currently have access to this content.