The influence of finite-core thickness on the velocity field around a vortex tube is addressed. An asymptotic expansion of the Biot-Savart law is made to a higher order in a small parameter, the ratio of core radius to curvature radius, which consists of the velocity field due to lines of monopoles and dipoles arranged on the centerline of the tube. The former is associated with an infinitely thin core and is featured by the circulation alone. The distribution of vorticity in the core reflects on the strength of dipole. This result is applied to a helical vortex tube, and the induced velocity due to a helical filament of the dipoles is obtained in the form of the Kapteyn series, which augments Hardin’s [Phys. Fluids25, 1949 (1982)] solution for the monopoles. Using a singularity-separation technique, a substantial part of the series is represented in a closed form for both the mono- and the dipoles. It is found from numerical calculation that the smaller the helix pitch is, the larger the relative influence of the dipoles is as the cylinder wound by the helix is approached.

1.
J. C.
Hardin
, “
The velocity field induced by a helical vortex filament
,”
Phys. Fluids
25
,
1949
(
1982
).
2.
N. E.
Joukowski
, “
Vortex theory of a rowing helical
,”
Trudy Otdeleniya Fizicheskikh Nauk Imperatorskogo Obshchestva Lyubitelei Estestvoznaniya
16
,
1
(
1912
).
3.
H.
Levy
and
A. G.
Forsdyke
, “
The steady motion and stability of a helical vortex
,”
Proc. R. Soc. London, Ser. A
120
,
670
(
1928
).
4.
S. E.
Widnall
, “
The stability of a helical vortex filament
,”
J. Fluid Mech.
54
,
641
(
1972
).
5.
D. W.
Moore
and
P. G.
Saffman
, “
The motion of a vortex filament with axial flow
,”
Philos. Trans. R. Soc. London, Ser. A
272
,
403
(
1972
).
6.
R. L.
Ricca
, “
The effect of torsion on the motion of a helical vortex filament
,”
J. Fluid Mech.
273
,
241
(
1994
).
7.
P. A.
Kuibin
and
V. L.
Okulov
, “
Self-induced motion and asymptotic expansion of the velocity field in the vicinity of a helical vortex filament
,”
Phys. Fluids
10
,
607
(
1998
).
8.
J.
Boersma
and
D. H.
Wood
, “
On the self-induced motion of a helical vortex
,”
J. Fluid Mech.
384
,
263
(
1999
).
9.
V. L.
Okulov
, “
The velocity field induced by vortex filaments with cylindrical and conic supporting surface
,”
Russ. J. Eng. Thermophys.
5
,
63
(
1995
).
10.
A.
Adebiyi
, “
On the existence of steady helical vortex tubes of small cross-section
,”
Q. J. Mech. Appl. Math.
34
,
153
(
1981
).
11.
M. J.
Landman
, “
On the generation of helical waves in circular pipe flow
,”
Phys. Fluids A
2
,
738
(
1990
).
12.
D. G.
Dritschel
, “
Generalized helical Beltrami flows in hydrodynamics and magnetohydrodynamics
,”
J. Fluid Mech.
222
,
525
(
1991
).
13.
S. V.
Alekseenko
,
P. A.
Kuibin
,
V. L.
Okulov
, and
S. I.
Shtork
, “
Helical vortices in swirl flow
,”
J. Fluid Mech.
382
,
195
(
1999
).
14.
S. C.
Crow
, “
Stability theory for a pair of trailing vortices
,”
AIAA J.
8
,
2172
(
1970
).
15.
F. W.
Dyson
, “
The potential of an anchor ring. Part II
,”
Philos. Trans. R. Soc. London, Ser. A
184
,
1041
(
1893
).
16.
Y.
Fukumoto
, “
Higher-order asymptotic theory for the velocity field induced by an inviscid vortex ring
,”
Fluid Dyn. Res.
30
,
65
(
2002
).
17.
C.
Tung
and
L.
Ting
, “
Motion and decay of a vortex ring
,”
Phys. Fluids
10
,
901
(
1967
).
18.
P. G.
Saffman
, “
The velocity of viscous vortex rings
,”
Stud. Appl. Math.
49
,
371
(
1970
).
19.
Y.
Fukumoto
and
H. K.
Moffatt
, “
Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity
,”
J. Fluid Mech.
417
,
1
(
2000
).
20.
T.
Levi-Civita
, “
Attrazione Newtoniana dei tubi sottili e vortici filiformi (Newtonian attraction of slender tubes and filiform vortices
,”
Annali della Scuola Normale Superiore di Pisa
1
,
229
(
1932
).
21.
R. L.
Ricca
, “
The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics
,”
Fluid Dyn. Res.
18
,
245
(
1996
).
22.
V. L.
Okulov
, “
On the stability of multiple helical vortices
,”
J. Fluid Mech.
521
,
319
(
2004
).
23.
Y.
Fukumoto
, “
Three-dimensional motion of a vortex filament and its relation to the localized induction hierarchy
,”
Eur. Phys. J. B
29
,
167
(
2002
).
24.
J.
Segata
, “
Well-posedness for the fourth order nonlinear Schrödinger type equation related to the vortex filament
,”
Diff. Integral Eq.
16
,
841
(
2003
).
25.
A. J.
Callegari
and
L.
Ting
, “
Motion of a curved vortex filament with decaying vortical core and axial velocity
,”
SIAM J. Appl. Math.
35
,
148
(
1978
).
26.
Y.
Fukumoto
and
T.
Miyazaki
, “
Three-dimensional distortions of a vortex filament with axial velocity
,”
J. Fluid Mech.
222
,
369
(
1991
).
27.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
, Cambridge,
1922
).
28.
D. H.
Wood
and
J.
Boersma
, “
On the motion of multiple helical vortices
,”
J. Fluid Mech.
447
,
149
(
2001
).
29.
S.
Leibovich
, “
Vortex stability and breakdown: Survey and extension
,”
AIAA J.
22
,
1192
(
1984
).
30.
M. P.
Escudier
, “
Vortex breakdown: observations and explanations
,”
Prog. Aerosp. Sci.
25
,
189
(
1988
).
31.
M. R.
Ruith
,
P.
Chen
,
E.
Meiburg
, and
T.
Maxworthy
, “
Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation
,”
J. Fluid Mech.
486
,
331
(
2003
).
32.
L. E.
Fraenkel
, “
Examples of steady vortex rings of small cross-section in an ideal fluid
,”
J. Fluid Mech.
51
,
119
(
1972
).
33.
Y.
Hattori
and
Y.
Fukumoto
, “
Short-wavelength stability analysis of thin vortex rings
,”
Phys. Fluids
15
,
3151
(
2003
).
34.
Y.
Fukumoto
and
Y.
Hattori
, “
Curvature instability of a vortex ring
,”
J. Fluid Mech.
526
,
77
(
2005
).
35.
R.
Klein
and
A. J.
Majda
, “
Self-stretching of a perturbed vortex filament. I. The asymptotic equation for deviations from a straight line
,”
Physica D
49
,
323
(
1991
).
36.
T. S.
Lundgren
and
W. T.
Ashurst
, “
Area-varying waves on curved vortex tubes with application to vortex breakdown
,”
J. Fluid Mech.
200
,
283
(
1989
).
37.
A.
Leonard
, “
Nonlocal theory of area-varying waves on axisymmetric vortex tubes
,”
Phys. Fluids
6
,
765
(
1994
).
38.
S. E.
Widnall
,
D. B.
Bliss
, and
A.
Zalay
, “
Theoretical and experimental study of the stability of a vortex pair
,” in
Aircraft Wake Turbulence and its Detection
, edited by
J. H.
Olsen
,
A.
Goldburg
, and
M.
Rogers
(
Plenum
, New York,
1971
), pp.
305
338
.
39.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
, New York,
1965
).
You do not currently have access to this content.