The paper presents results of magnetohydrodynamic (MHD) supersonic boundary layer control experiments using repetitively pulsed, short-pulse duration, high-voltage discharges in M=3 flows of nitrogen and air in the presence of a magnetic field of B=1.5T. We also have conducted boundary layer flow visualization experiments using laser sheet scattering. Flow visualization results show that as the Reynolds number increases, the boundary layer flow becomes much more chaotic, with the spatial scale of temperature fluctuations decreasing. Combined with density fluctuation spectra measurements using laser differential interferometry (LDI) diagnostics, this behavior suggests that boundary layer transition occurs at stagnation pressures of P0200250Torr. A crossed discharge (pulser+dc sustainer) in M=3 flows of air and nitrogen produced a stable, diffuse, and uniform plasma, with the time-average dc current up to 1.0A in nitrogen and up to 0.8A in air. The electrical conductivity and the Hall parameter in these flows are inferred from the current voltage characteristics of the sustainer discharge. LDI measurements detected the MHD effect on the ionized boundary layer density fluctuations at these conditions. Retarding Lorentz force applied to M=3 nitrogen, air, and N2He flows produces an increase of the density fluctuation intensity by up to 2dB (about 25%), compared to the accelerating force of the same magnitude. The effect is demonstrated for two possible combinations of the magnetic field and current directions producing the same Lorentz force direction (both for accelerating and retarding force).

1.
I. V.
Adamovich
,
J. W.
Rich
, and
G. L.
Nelson
, “
Feasibility study of magneto-hydrodynamics acceleration of unseeded and seeded air flows
,”
AIAA J.
36
,
590
(
1998
).
2.
V. L.
Fraishtadt
,
A. L.
Kuranov
, and
E. G.
Sheikin
, “
Use of MHD systems in hypersonic aircraft
,”
Tech. Phys.
43
,
1309
(
1998
).
3.
C.
Park
,
U. B.
Mehta
, and
D. W.
Bogdanoff
, “
Magnetohydrodynamic energy bypass Scramjet performance with real gas effects
,”
J. Propul. Power
17
,
1049
(
2001
).
4.
S. O.
Macheret
,
M. N.
Shneider
,
R. B.
Miles
, and
R. J.
Lipinski
, “
Electron beam generated plasmas in hypersonic MHD channels
,”
AIAA J.
39
,
1127
(
2001
).
5.
S. O.
Macheret
,
M. N.
Shneider
, and
R. B.
Miles
, “
Magnetohydrodynamic control of hypesonic flow and Scramjet inlets using electron beam ionization
,”
AIAA J.
40
,
74
(
2002
).
6.
S. O.
Macheret
,
M. N.
Shneider
, and
R. B.
Miles
, “
MHD power extraction from cold hypersonic air flow with external ionizers
,”
J. Propul. Power
18
,
424
(
2002
).
7.
A. L.
Kuranov
and
E. G.
Sheikin
, “
Magnetohydrodynamic control on hypersonic aircraft under ‘Ajax' concept
,”
J. Spacecr. Rockets
40
,
174
(
2003
).
8.
S. V.
Bobashev
,
Yu. P.
Golovachov
, and
D. M.
Van Wie
, “
Deceleration of supersonic plasma flow by an applied magnetic field
,”
J. Propul. Power
19
,
538
(
2003
).
9.
R.
Meyer
,
M.
Nishihara
,
A.
Hicks
,
N.
Chintala
,
M.
Cundy
,
W. R.
Lempert
,
I. V.
Adamovich
, and
S.
Gogineni
, “
Measurements of flow conductivity and density fluctuations in supersonic nonequilibrium MHD flows
,”
AIAA J.
43
, No. 9,
1923
(
2005
).
10.
P.
Palm
,
R.
Meyer
,
E.
Ploenjes
,
A.
Bezant
,
I. V.
Adamovich
,
J. W.
Rich
, and
S.
Gogineni
, “
MHD effect on a supersonic weakly ionized flow
,” AIAA Pap. 2002–2246 (
2002
).
11.
H.
Schlichting
,
Boundary Layer Theory
(
McGraw-Hill
, New York,
1968
).
12.
C.
Henoch
and
J.
Stace
, “
Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force
,”
Phys. Fluids
7
,
1371
(
1995
).
13.
R.
Meyer
,
N.
Chintala
,
B.
Bystricky
,
A.
Hicks
,
M.
Cundy
,
W. R.
Lempert
, and
I. V.
Adamovich
, “
Lorentz force effect on a supersonic ionized boundary layer
,” AIAA Pap. 2004–0510 (
2004
).
14.
M.
Nishihara
,
R.
Meyer
,
M.
Cundy
,
W. R.
Lempert
, and
I. V.
Adamovich
, “
Development and operation of a supersonic nonequilibrium MHD channel
,” AIAA Pap. 2004–2441 (
2004
).
15.
M.
Nishihara
,
N.
Jiang
,
W. R.
Lempert
,
I. V.
Adamovich
, and
S.
Gogineni
, “
MHD supersonic boundary layer control using pulsed discharge ionization
,” AIAA Pap. 2005–1341 (
2005
).
16.
J. D.
Cobine
,
Gaseous Conductors: Theory and Engineering Applications
(
Dover
, New York,
1958
).
17.
A. E.
Hill
, “
Continuous uniform excitation of medium-pressure CO2 laser plasmas by means of controlled avalanche ionization
,”
Appl. Phys. Lett.
22
,
670
(
1973
).
18.
N. A.
Generalov
,
V. P.
Zimakov
,
V. D.
Kosynkin
,
Yu. P.
Raizer
, and
D. I.
Roitenburg
, “
Method for significantly increasing the stability limit of the discharge in fast-flow large-volume lasers
,”
Sov. Tech. Phys. Lett.
1
,
201
(
1975
).
19.
R. C.
Murray
,
S. H.
Zaidi
,
M. R.
Carraro
,
L. M.
Vasilyak
,
M. N.
Shneider
,
S. O.
Macheret
, and
R. B.
Miles
, “
Investigation of a Mach 3 cold air MHD channel
,” AIAA Pap. 2003–4282 (
2003
).
20.
R. C.
Murray
,
S. H.
Zaidi
,
M. R.
Carraro
,
L. M.
Vasilyak
,
M. N.
Shneider
,
S. O.
Macheret
, and
R. B.
Miles
, “
Observation of MHD effects with nonequilibrium ionization in cold supersonic air flows
,” AIAA Pap. 2004–1025 (
2004
).
21.
T. R.
Salyer
,
S. H.
Collicott
, and
S. P.
Schneider
, “
Feedback stabilized laser differential interferometry for supersonic blunt body receptivity experiments
,” AIAA Pap. 2000–0846 (
2000
).
22.
P.
Rawat
,
X.
Zhong
,
V.
Singh
, and
S.
Gogineni
, “
Numerical simulation of secondary flow in a weakly ionized supersonic flow with applied electromagnetic field
,” AIAA Pap. 2005–5050 (
2005
).
23.
Yu. P.
Raizer
,
Gas Discharge Physics
(
Springer-Verlag
, Berlin,
1991
).
24.
B. F.
Gordiets
,
V. A.
Osipov
, and
L. A.
Shelepin
,
Kinetic Processes in Gases and Molecular Lasers
(
Gordon and Breach
, London,
1988
).
25.
R. J.
Rosa
,
Magnetohydrodynamic Energy Conversion
(
McGraw-Hill
, New York,
1968
).
26.
A. E. D.
Heylen
, “
Electrical ionization and breakdown of gases in a crossed magnetic field
,”
IEE Proc., Part A: Phys. Sci., Meas. Instrum., Manage. Educ.
127
,
221
(
1980
).
27.
C. L.
Dargan
and
A. E. D.
Heylen
, “
Uniform-field sparking voltages of gases in crossed magnetic fields
,”
IEE Proc. F, Commun. Radar Signal Process.
115
,
1034
(
1968
).
28.
R.
Meyer
,
B.
McEldowney
,
N.
Chintala
, and
I. V.
Adamovich
, “
Measurements of electrical parameters of a supersonic nonequilibrium MHD channel
,” AIAA Pap. 2003–4279 (
2003
).
29.
E. M.
Fernando
and
A. J.
Smits
, “
A supersonic turbulent boundary layer in an adverse pressure gradient
,”
J. Fluid Mech.
211
,
285
(
1990
).
30.
D. R.
Smith
and
A. J.
Smits
, “
The rapid expansion of a turbulent boundary layer in a supersonic flow
,”
Theor. Comput. Fluid Dyn.
2
,
319
(
1991
).
You do not currently have access to this content.