The sinh-Poisson equation describes a stream function configuration of a stationary two-dimensional (2D) Euler flow. We study two classes of its exact solutions for doubly periodic domains (or doubly periodic vortex arrays in the plane). Both types contain vortex dipoles of different configurations, an elongated “cat-eye” pattern, and a “diagonal” (symmetric) configuration. We derive two new solutions, one for each class. The first one is a generalization of the Mallier–Maslowe vortices, while the second one consists of two corotating vortices in a square cell. Next, we examine the dynamic stability of such vortex dipoles to initial perturbations, by numerical simulations of the 2D Euler flows on periodic domains. One typical member from each class is chosen for analysis. The diagonally symmetric equilibrium maintains stability for all (even strong) perturbations, whereas the cat-eye pattern relaxes to a more stable dipole of the diagonal type.

1.
D.
Montgomery
,
W. H.
Matthaeus
,
W. T.
Stribling
,
D.
Martinez
, and
S.
Oughton
,
“Relaxation in two dimensions and the sinh-Poisson equation,”
Phys. Fluids A
4
,
3
(
1992
).
2.
R.
Mallier
and
S. A.
Maslowe
, “
A row of counter rotating vortices
,”
Phys. Fluids A
5
,
1074
(
1993
).
3.
R. A.
Pasmanter
, “
On long-lived vortices in 2-D viscous flows, most probable states of inviscid 2-D flows and soliton equation
,”
Phys. Fluids
6
,
1236
(
1994
).
4.
T.
Dauxois
, “
Nonlinear stability of counter-rotating vortices
,”
Phys. Fluids
6
,
1625
(
1994
).
5.
T.
Dauxois
,
S.
Fauve
, and
L.
Tuckerman
, “
Stability of periodic arrays of vortices
,”
Phys. Fluids
8
,
487
(
1996
).
6.
K. W.
Chow
,
N. W. M.
Ko
, and
S. K.
Tang
, “
Solitons in (2+0) dimensions and their applications in vortex dynamics
,”
Fluid Dyn. Research
21
,
101
(
1997
).
7.
K. W.
Chow
,
N. W. M.
Ko
,
R. C. K.
Leung
, and
S. K.
Tang
, “
Inviscid two dimensional vortex dynamics and a soliton expansion of the sinh-Poisson equation
,”
Phys. Fluids
10
,
1111
(
1998
).
8.
B. N.
Kuvshinov
and
T. J.
Schep
, “
Double-periodic arrays of vortices
,”
Phys. Fluids
12
,
3282
(
2000
).
9.
K. W.
Chow
, “
A class of doubly periodic waves for nonlinear evolution equations
,”
Wave Motion
35
,
71
(
2002
).
10.
K. W.
Chow
,
S. C.
Tsang
, and
C. C.
Mak
, “
Another exact solution for two dimensional, inviscid sinh Poisson vortex arrays
,”
Phys. Fluids
15
,
2437
(
2003
).
11.
M. J.
Ablowitz
and
H.
Segur
, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia,
1981
).
12.
M.
Abramowitz
and
I.
Stegun
, Handbooks of Mathematical Functions (Dover, New York,
1964
).
13.
Z.
Yin
,
D. C.
Montgomery
, and
H. J. H.
Clercx
, “
Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of ‘patches’ and ‘points’, ”
Phys. Fluids
15
,
1937
(
2003
).
14.
D.
Gurarie
and
S.
Danilov
, “
Forced two dimensional turbulence in spectral and physical space
,”
Phys. Rev. E
63
,
061208
(
2001
).
15.
H. J. H.
Clercx
,
S. R.
Massen
, and
G. J. F. van
Heijst
, “
Spontaneous spin-up during the decay of 2D turbulence in a square container with rigid boundaries
,”
Phys. Rev. Lett.
80
,
5129
(
1998
).
16.
E. J.
Hopfinger
and
G. J. F. van
Heijst
, “
Vortices in rotating fluids
,”
Annu. Rev. Fluid Mech.
25
,
241
(
1993
).
17.
O.
Cardoso
,
D.
Marteau
, and
P.
Tabeling
, “
Quantitative experimental study of the free decay of quasi-two dimensional turbulence
,”
Phys. Rev. E
49
,
454
(
1994
).
18.
S.
Julien
,
J. M.
Chomaz
, and
J. C.
Lasheras
, “
Three-dimensional stability of periodic arrays of counter rotating vortices
,”
Phys. Fluids
14
,
732
(
2002
).
19.
D. G.
Dritschel
and
M. H. P.
Ambaum
, “
A contour-advective semi-Lagrangian algorithm for the simulation of fine-scale conservative fields
,”
Q. J. R. Meteorol. Soc.
123
,
1097
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.