We present direct numerical simulations of Boussinesq and non-Boussinesq Rayleigh–Bénard convection in a rigid box containing a perfect gas. For small stratifications, which includes Boussinesq fluids, the first instability after steady rolls was an oscillatory instability (a Hopf bifurcation). The resulting convection was characterized by two hot and two cold blobs circulating each convective roll. The same sign thermal perturbations (blobs) are at diametrically opposite points on the circular rolls, i.e., they are symmetric about the roll center. The time for a hot (or cold) blob to circulate a roll was between two and three roll turnover times. When the stratification was of sufficient strength, there was a dramatic change in the nature of the bifurcation. The sign of the thermal perturbations became antisymmetric with respect to the roll center, i.e., a hot blob was diametrically opposite a cold blob. In this case, a hot or cold blob circulated around each roll in about one turnover time. In a stratified layer, the Rayleigh number varies with height. We found that at the Hopf bifurcation, the Rayleigh number at the base was closest to the Boussinesq value. The change in instability appeared to be related to an increase in the speed (or Mach number) of the circulating rolls. It did not seem to be affected by the transport property variation with temperature. If the along roll aspect ratio was less than 2 or the walls perpendicular to the roll axis periodic, then only the symmetric instability could be found. We describe how our results might be reproduced in a laboratory experiment of convection in cryogenic helium gas.

1.
X.-Z.
Wu
and
A.
Libchaber
, “
Non-Boussinesq effects in free thermal convection
,”
Phys. Rev. A
43
,
2833
(
1991
).
2.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
Turbulent convection at very high Rayleigh numbers
,”
Nature (London)
404
,
837
(
2000
).
3.
G. T.
Jarvis
and
D. P.
Mckenzie
, “
The conversion of heat into mechanical work by mantle convection
,”
J. Geophys. Res.
85
,
6093
(
1980
).
4.
J.
Zhang
,
S.
Childress
, and
A.
Libchaber
, “
Non-Boussinesq effect: Asymmetric velocity profiles in thermal convection
,”
Phys. Fluids
10
,
1534
(
1998
).
5.
X.
Chavanne
,
F.
Chila
,
B.
Chabaud
,
B.
Castaing
, and
B.
Hébral
, “
Turbulent Rayleigh–Bénard convection in gaseous and liquid He
,”
Phys. Fluids
13
,
1300
(
2001
).
6.
J. J.
Niemela
and
K. R.
Sreenivasan
, “
Confined turbulent convection
,”
J. Fluid Mech.
481
,
355
(
2003
).
7.
J. Boussinesq, Theory Analytique de la Chaleur (Gauthier-Villars, Paris, 1903), Vol. 2.
8.
J. P.
Gollub
and
S. V.
Benson
, “
Many routes to turbulent convection
,”
J. Fluid Mech.
100
,
449
(
1980
).
9.
R.
Farhadieh
and
R. R.
Tankin
, “
Interferometric study of two-dimensional Bénard convection cells
,”
J. Fluid Mech.
56
,
739
(
1974
).
10.
F. B.
Lipps
, “
Numerical simulation of three-dimensional Bénard convection in air
,”
J. Fluid Mech.
75
,
113
(
1976
).
11.
E.
Bodenschatz
,
W.
Pesch
, and
G.
Ahlers
, “
Recent developments in Rayleigh–Bénard convection
,”
Annu. Rev. Fluid Mech.
32
,
709
(
2000
).
12.
J.
Zhang
,
S.
Childress
, and
A.
Libchaber
, “
Non-Boussinesq effect: Thermal convection with broken symmetry
,”
Phys. Fluids
9
,
1034
(
1997
).
13.
A.
Roy
and
V.
Steinberg
, “
Reentrant hexagons in non-Boussinesq Rayleigh–Benard convection: Effect of compressibility
,”
Phys. Rev. Lett.
88
,
244503
(
2002
).
14.
H.
Meyer
and
A. B.
Kogan
, “
Onset of convection in a very compressible fluid: The transient toward steady state
,”
Phys. Rev. E
66
,
056310
(
2002
).
15.
H.
Meyer
and
A. B.
Kogan
, “
Oscillatory and relaxation studies in the convection of supercritical He-3
,”
Physica B
329
,
114
(
2003
).
16.
K. T.
Yang
, “
Transitions and bifurcations in laminar buoyant flows in confined enclosures
,”
ASME J. Heat Transfer
110
,
1204
(
1988
).
17.
V. E.
Denny
and
R. M.
Clever
, “
Comparisons of Galerkin and finite difference methods for solving highly nonlinear thermally driven flows
,”
J. Comput. Phys.
16
,
271
(
1974
).
18.
D. O.
Gough
,
D. R.
Moore
,
E. A.
Spiegel
, and
N. O.
Weiss
, “
Convective instability in a compressible atmosphere II
,”
Astrophys. J.
206
,
536
(
1976
).
19.
F. H.
Busse
, “
Nonlinear properties of thermal convection
,”
Rep. Prog. Phys.
41
,
1967
(
1978
).
20.
M. C.
Depassier
and
E. A.
Spiegel
, “
The large-scale structure of compressible convection
,”
Astron. J.
86
,
496
(
1981
).
21.
F. H. Busse and R. M. Clever, “Mechanisms of the onset of time-dependence in thermal convection,” Time-Dependent Nonlinear Convection, edited by P. A. Tyvand (Computational Mechanics, Southampton, UK, 1998), pp. 1–50.
22.
D.
Mukutmoni
and
K. T.
Yang
, “
Rayleigh–Bénard convection in a small aspect ratio enclosure: Part 1—Bifurcation to oscillatory convection
,”
ASME J. Heat Transfer
115
,
360
(
1993
).
23.
N. E.
Hurlbert
,
J.
Toomre
, and
J. M.
Massaguer
, “
Two-dimensional compressible convection extending over multiple scale heights
,”
Astrophys. J.
282
,
557
(
1984
).
24.
E.
Graham
, “
Numerical simulation of two-dimensional compressible convection
,”
J. Fluid Mech.
70
,
689
(
1975
).
25.
S.
Paolucci
and
D. R.
Chenworth
, “
Departures from the Boussinesq approximation in laminar Beńard convection
,”
Phys. Fluids
30
,
1561
(
1987
).
26.
J.
Fröhlich
,
P.
Laure
, and
R.
Peyret
, “
Large departures from Boussinesq approximation in the Rayleigh–Bénard problem
,”
Phys. Fluids A
4
,
1355
(
1992
).
27.
K. L.
Chan
and
C. L.
Wolff
, “
ADI on a staggered mesh—A method for the calculation of compressible convection
,”
J. Comput. Phys.
47
,
109
(
1982
).
28.
G. K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, Cambridge, UK, 1988).
29.
F. J.
Robinson
,
P.
Demarque
,
L. H.
Li
,
S.
Sofia
,
Y.-C.
Kim
,
K. L.
Chan
, and
D. B.
Guenmther
, “
Three-dimensional convection simulations of the outer layers of the Sun using realistic physics
,”
Mon. Not. R. Astron. Soc.
340
,
923
(
2003
).
30.
R. P.
Behringer
, “
Rayleigh–Bénard convection and turbulence in liquid helium
,”
Rev. Mod. Phys.
57
,
657
(
1985
).
31.
P.
Colinet
and
J. C.
Legros
, “
On the Hopf bifurcation occurring in the two-layer Rayleigh–Bénard convective instability
,”
Phys. Fluids
6
,
2631
(
1994
).
32.
J. P. Gollub, S. V. Benson, and J. F. Steinman, “A subharmonic route to turbulent convection,” Nonlinear Dynamics, edited by H. G. Hellman (New York Academy of Sciences, New York, 1980).
33.
W. V. R.
Malkus
and
G.
Veronis
, “
Finite amplitude cellular convection
,”
J. Fluid Mech.
4
,
225
(
1958
).
34.
D. J. Tritton, Physical Fluid Dynamics (Oxford University Press, New York, 1988).
35.
E. W.
Bolton
,
F. H.
Busse
, and
R. M.
Clever
, “
Oscillatory instability of convection rolls at intermediate Prandtl numbers
,”
J. Fluid Mech.
164
,
469
(
1986
).
36.
F. H.
Busse
and
R. M.
Clever
, “
Standing and traveling oscillatory blob convection
,”
J. Fluid Mech.
297
,
255
(
1995
).
37.
J. J. Niemela (personal communication).
38.
R. J. Donnelly, “Ultrahigh Reynolds number flows using cryogenic helium: An overview,” Flow at Ultrahigh Reynolds and Rayleigh Numbers: A Status Report, edited by R. J. Donnelly and K. R. Sreenivasan (Springer, Berlin, 1998).
39.
G. K.
Batchelor
, “
The conditions for dynamical similarity of motions of motions of a frictionless perfect-gas atmosphere
,”
Q. J. R. Meteorol. Soc.
79
,
224
(
1953
).
40.
R.
Van der Borght
and
P.
Fox
, “
Accuracy of the anelastic approximation in the theory of compressible convection
,”
Proc. ASA
5
,
170
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.