We present numerical simulations of a planar shock interacting with a two-dimensional sulfur hexafluoride (SF6) cylinder. We have excellent agreement with experiments at two Mach numbers M=1.095 [Jacobs, Phys. Fluids A 5, 2239 (1993)] and M=1.2 [Zoldi, Ph.D. thesis, SUNY Stony Brook, 2002]. This includes intermediate scale features and quantities such as bounding box dimensions of coherent structures and velocity magnitude distribution function. Our simulations use a validated viscous FLASH [ASCI FLASH Center, “FLASH User’s Guide,” University of Chicago, 2002] environment initialized with a cylinder bounded by a finite-thickness interfacial transition layer of specific shape. The shape parameters are determined through iteration, beginning with the uncertain experimental images and optimizing to obtain maximal agreement with early to intermediate time evolving structures. The visiometric approach and the vortex paradigm [Hawley and Zabusky, Phys. Rev. Lett. 63, 1241 (1989)] are essential to obtain insight into this Richtmyer–Meshkov environment. We verify our recent discovery [Zabusky and Zhang, Phys. Fluids 14, 419 (2002)] that after the primary shock-deposition of vorticity by the incident shock, a vortex bilayer of large circulation magnitude grows significantly through intermediate times. The inclusion of physical viscosity allows us to examine some aspects of pre-turbulence at late–intermediate times.

1.
N. J.
Zabusky
, “
Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments
,”
Annu. Rev. Fluid Mech.
31
,
495
(
1999
).
2.
M.
Brouillette
, “
The Richtmyer–Meshkov Instability
,”
Annu. Rev. Fluid Mech.
34
,
445
(
2002
).
3.
J. W.
Jacobs
, “
The dynamics of shock accelerated light and heavy gas cylinder
,”
Phys. Fluids A
5
,
2239
(
1993
).
4.
C. A. Zoldi, “A numerical and experimental study of a shock-accelerated heavy gas cylinder,” Ph.D. thesis, SUNY Stony Brook, 2002.
5.
R.
Samtaney
and
N. J.
Zabusky
, “
Circulation deposition on shock-accelerated planar and curved density stratified interfaces: Models and scaling laws
,”
J. Fluid Mech.
269
,
45
(
1994
).
6.
R. Samtaney, “Vorticity in shock-accelerated density-stratified interfaces: An analytical and computational study,” Ph.D. thesis, Rutgers University, 1993.
7.
G.
Rudinger
and
L.
Somers
, “
Behavior of small regions of different gases carried in accelerated gas flows
,”
J. Fluid Mech.
7
,
161
(
1960
).
8.
J. F.
Haas
and
B.
Sturtevant
, “
Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
,”
J. Fluid Mech.
181
,
41
(
1987
).
9.
J. F.
Hawley
and
N. J.
Zabusky
, “
Vortex paradigm for shock accelerated density stratified interfaces
,”
Phys. Rev. Lett.
63
,
1241
(
1989
).
10.
N. J.
Zabusky
and
S.
Zhang
, “
Shock–planar curtain interactions in two dimensions: Emergence of vortex double layers, vortex projectiles and decaying stratified turbulence
,”
Phys. Fluids
14
,
419
(
2002
).
11.
J. W.
Miles
, “
On the disturbed motion of a plane vortex sheet
,”
J. Fluid Mech.
3
,
538
(
1958
).
12.
R.
Samtaney
and
D. I.
Pullin
, “
On initial-value and self-similar solutions of the compressible Euler equations
,”
Phys. Fluids
8
,
2650
(
1996
).
13.
B. D.
Jones
and
J. W.
Jacobs
, “
A membraneless experiment for the study of Richtmyer–Meshkov instability of a shock-accelerated gas interface
,”
Phys. Fluids
9
,
3078
(
1997
).
14.
N. J.
Zabusky
,
S.
Gupta
, and
Y.
Gulak
, “
Localization and spreading of contact discontinuity layers in simulations of compressible dissipationless flows
,”
J. Comput. Phys.
188
,
348
(
2003
).
15.
ASCI FLASH Center, “FLASH User’s Guide,” University of Chicago, 2002.
16.
P.
Colella
and
P. R.
Woodward
, “
The piecewise parabolic method (PPM) for gas-dynamical simulations
,”
J. Comput. Phys.
54
,
174
(
1984
).
17.
J.
Glimm
,
J. W.
Grove
,
X. L.
Li
,
W.
Oh
, and
D. H.
Sharp
, “
A critical analysis of Rayleigh–Taylor growth rates
,”
J. Comput. Phys.
169
,
652
(
2001
).
18.
D. S.
Balsara
and
C. W.
Shu
, “
Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly higher order of accuracy
,”
J. Comput. Phys.
160
,
405
(
2000
).
19.
A. C.
Calder
,
B.
Fryxell
,
T.
Plewa
,
R.
Rosner
,
L. J.
Dursi
,
V. G.
Weirs
,
T.
Dupont
,
H. F.
Robey
,
J. O.
Kane
,
B. A.
Remington
,
R. P.
Drake
,
G.
Dimonte
,
M.
Zingale
,
F. X.
Timmes
,
K.
Olson
,
P.
Ricker
,
P.
MacNiece
, and
H. M.
Tufo
, “
On validating an astrophysical simulation code
,”
Astrophys. J., Suppl. Ser.
143
,
201
(
2002
).
20.
I. V.
Sytine
,
D. H.
Porter
,
P. R.
Woodward
,
S. W.
Hodson
, and
K. H.
Winkler
, “
Convergence tests for the piecewise parabolic method and Navier–Stokes solutions for homogeneous compressible turbulence
,”
J. Comput. Phys.
158
,
225
(
2000
).
21.
F. J.
Bitz
and
N. J.
Zabusky
, “
DAVID and ‘visiometrics’: Visualizing and quantifying evolving amorphous objects
,”
Comput. Phys.
4
,
603
(
1990
).
22.
N. J.
Zabusky
and
S.-M.
Zeng
, “
Shock cavity implosion morphologies and vortical projectile generation in axisymmetric shock–spherical F/S bubble interaction
,”
J. Fluid Mech.
362
,
327
(
1998
).
23.
J.
Reinaud
,
L.
Joly
, and
P.
Chassiang
, “
The baroclinic secondary instability of the two-dimensional shear layer
,”
Phys. Fluids
12
,
2489
(
2000
).
24.
R.
Krasny
and
M.
Nitsche
, “
The onset of chaos in vortex sheet flow
,”
J. Fluid Mech.
454
,
47
(
2002
).
25.
R. M.
Baltrusaitis
,
M. L.
Gittings
,
R. P.
Weaver
,
R. F.
Benjamin
, and
J. M.
Budzinski
, “
Simulation of shock-generated instabilities
,”
Phys. Fluids
8
,
2471
(
1996
).
26.
M. C.
Thurber
and
R. K.
Hanson
, “
Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence
,”
Exp. Fluids
30
,
93
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.