Two- and three-dimensional creeping flows and diffusion transport through constricted and possibly rough surfaces are studied. Asymptotic expansions of conductances are derived as functions of the constriction local geometry. The validity range of the proposed theoretical approximations is explored through a comparison either with available exact results for specific two-dimensional aperture fields or with direct numerical computations for general three-dimensional geometries. The large validity range of the analytical expressions proposed for the hydraulic conductivity (and to a lesser extent for the electrical conductivity) opens up interesting perspectives for the simulation of flows in highly complicated geometries with a large number of constrictions.

1.
R.
Zimmerman
and
G.
Bodvarsson
, “
Hydraulic conductivity of rock fractures
,”
Trans. Por. Med.
23
(
1
),
1
(
1996
).
2.
P. Adler and J. Thovert, Fractures and Fracture Networks (Kluwer Academic, Amsterdam, 1999).
3.
H.
Butcher
, “
Fundamental principles for static sealing with metal in high pressure field
,”
ASME Trans.
16
,
304
(
1973
).
4.
S.
Matthias
and
F.
Müller
, “
Asymmetric pores in a silicon membrane acting as massively parallel Brownian ratchets
,”
Nature (London)
424
,
53
(
2003
).
5.
H. M.
Martin
, “
The lubrication of gear teath
,”
Engineer (London)
102
,
119
(
1916
).
6.
J. B.
Keller
, “
Viscous flow through a grating or lattice cylinders
,”
J. Fluid Mech.
18
,
94
(
1964
).
7.
M. J.
Manton
, “
Low Reynolds number flow in slowly varying axisymmetric tubes
,”
J. Fluid Mech.
49
,
451
(
1971
).
8.
S.
Sisavath
,
X.
Jing
, and
R. W.
Zimmerman
, “
Creeping flow through a pipe of varying radius
,”
Phys. Fluids
13
,
2762
(
2001
).
9.
J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, Amsterdam, 1983).
10.
S.
Richardson
, “
A model for the boundary condition of porous material p2
,”
J. Fluid Mech.
49
,
327
(
1971
).
11.
G. I.
Taylor
, “
A model for the boundary condition of porous material p1
,”
J. Fluid Mech.
49
,
319
(
1971
).
12.
M.
Hemmat
and
A.
Borhan
, “
Creeping flow through sinusoidally constricted capillaries
,”
Phys. Fluids
7
,
2111
(
1995
).
13.
P. K.
Kitanidis
and
B. B.
Dykaar
, “
Stokes flow in a slowly varying two- dimensional periodic pore
,”
Trans. Por. Med.
26
(
1
),
89
(
1997
).
14.
Y.
Bernabe
and
J. F.
Olson
, “
The hydraulic conductance of a capillary with a sinusoidally varying cross-section
,”
Geophys. Res. Lett.
27
,
245
(
2000
).
15.
N.
Letalleur
,
F.
Plouraboué
, and
M.
Prat
, “
Average flow model of rough surface lubrication: Flow factors for sinusoidal surfaces
,”
ASME J. Tribol.
124
,
539
(
2002
).
16.
E.
Hasegawa
and
H.
Izuchi
, “
On steady flow through a channel consisting of an uneven wall and a plane wall
,”
Bull. JSME
26
,
514
(
1983
).
17.
C. H.
Wang
, “
Drag due to a striated boundary in slow Couette flow
,”
Phys. Fluids
21
,
697
(
1978
).
18.
C. B.
Shah
and
Y. C.
Yortsos
, “
The permeability of strongly disordered systems
,”
J. Fluid Mech.
8
,
280
(
1989
).
19.
S. M.
Koslov
, “
Geometric aspects of averaging
,”
Russ. Math. Surveys
44
,
91
(
1989
).
20.
L.
Borcea
and
G.
Papanicolaou
, “
Network approximation for transport properties of high contrast materials
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
58
,
501
(
1998
).
21.
L.
Borcea
, “
Asymptotic analysis of quasi-static transport in high contrast conductive media
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
58
,
597
(
1998
).
22.
L. G. Leal, Laminar Flow and Convective Transport Processes, Butterworth–Heinemann Series in Chemical Engineering (Butterworth–Heinemann, Boston, 1992).
23.
H. A. Stone, “Pressure driven flow between and relative motion of corrugated or rough surfaces: Analytical results via higher order lubrication theory,” Technical report, Harvard, DEAS, 1999.
24.
S. Kim and S. J. Karrila, Micro-Hydrodynamics (Butterworth-Heinemann, Boston, 1991).
25.
L. G.
Leal
, “
Particle motion in a viscous liquid
,”
Annu. Rev. Fluid Mech.
12
,
435
(
1980
).
26.
W. R.
Dean
and
M. E.
O’Neil
, “
A slow motion of viscous liquid caused by a rotation of a solid sphere
,”
Mathematika
10
,
13
(
1963
).
27.
M. E.
O’Neill
and
K.
Stwartson
, “
On the slow motion of a sphere parallel to a nearby plane wall
,”
J. Fluid Mech.
27
,
705
(
1967
).
28.
A.
Goldman
,
R. G.
Cox
, and
H.
Brenner
, “
Slow viscous motion of a sphere parallel to a plane wall—I motion through a quiescent fluid
,”
Chem. Eng. Sci.
22
,
637
(
1967
).
29.
P.
Bungay
and
H.
Brenner
, “
The motion of a closely fitting sphere in a fluid-filled tube
,”
Int. J. Multiphase Flow
1
,
25
(
1973
).
30.
A.
Falade
and
H.
Brenner
, “
First-order wall curvature effects upon the Stokes resistance of a spherical particle moving in close proximity to a solid wall
,”
J. Fluid Mech.
193
,
533
(
1988
).
31.
B. R.
Hirschfeld
,
P.
Bungay
, and
H.
Brenner
, “
First and second order wall effects upon the slow viscous asymmetric motion of an arbirary shaped positioned and oriented particle within a circular cylinder
,”
Physico-Chem. Hydrodyn.
5
,
99
(
1984
).
32.
R. G.
Cox
, “
The motion of suspended particles almost in contact
,”
Int. J. Multiphase Flow
1
,
343
(
1974
).
33.
L.
Borcea
and
G.
Papanicolaou
, “
A hybrid numerical method for high contrast conductivity problems
,”
J. Comput. Appl. Math.
87
,
61
(
1997
).
34.
B. Hamrock, Fundamentals of Fluid Film Lubrication (McGraw–Hill, New York, 1994).
This content is only available via PDF.
You do not currently have access to this content.