We consider incipient vortex breakdown and describe how infinitesimal perturbations may destabilize a columnar swirling jet. The framework is axisymmetric and inviscid following Wang and Rusak’s [J. Fluid Mech. 340, 177 (1997)] analysis. The goal of the present study is to relate the local properties of swirling flows in infinite pipes to their global stability properties in pipes of finite length. A spatial linear stability analysis is pursued which gives a complementary point of view to the subcritical/supercritical concept introduced by Benjamin [J. Fluid Mech. 14, 593 (1962)]. In contrast to supercritical flows which exhibit two neutral spatial branches traveling downstream and two counterpropagating evanescent spatial branches, subcritical flows exhibit a frequency range where all spatial branches are neutral, three of which travel downstream and one upstream. By using global energy budget arguments and monitoring how the upstream wave is reflected into the downstream waves and conversely, the inlet and outlet conditions are shown to drive the instability in the limit of long but finite pipes. Various inlet and outlet conditions are proposed that stabilize or destabilize the flow, depending on their ability to supply energy. The analysis demonstrates therefore that the global instability accounting for incipient vortex breakdown in Wang and Rusak’s model may arise from the combination of a locally neutral flow and suitable inlet and outlet conditions.

1.
H. B. Squire, “Analysis of the vortex breakdown phenomenon,” Miszallaneen der Angewandten Mechanik (1960), pp. 306–312.
2.
T. B.
Benjamin
, “
Theory of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
(
1962
).
3.
M.
Gaster
, “
A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability
,”
J. Fluid Mech.
14
,
222
(
1962
).
4.
P. Huerre and M. Rossi, “Hydrodynamic instabilities in open flows,” in Hydrodynamic and Nonlinear Instabilities, edited by C. Godrèche and P. Manneville (Cambridge University Press, Cambridge, England, 1998), pp. 81–294.
5.
J.-M.
Chomaz
and
A.
Couairon
, “
Against the wind
,”
Phys. Fluids
11
,
2977
(
1999
).
6.
O.
Doaré
and
E.
De Langre
, “
Local and global stability of fluid conveying pipes on elastic foundations
,”
J. Fluids Struct.
16
,
1
(
2002
).
7.
Squire’s standing waves might equally be called stationary waves.
8.
M. P.
Escudier
, “
Vortex breakdown: Observations and explanations
,”
Prog. Aerosp. Sci.
25
,
189
(
1988
).
9.
C.-Y.
Tsai
and
S.
Widnall
, “
Examination of a group-velocity criterion for breakdown of a vortex flow in a divergent duct
,”
Phys. Fluids
23
,
864
(
1980
).
10.
I.
Delbende
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Absolute/convective instabilities in the Batchelor vortex: A numerical study of the linear impulse response
,”
J. Fluid Mech.
355
,
229
(
1998
).
11.
C.
Olendraru
,
A.
Sellier
, and
P.
Huerre
, “
Inviscid instability of the Batchelor vortex: Absolute/convective transition and spatial branches
,”
Phys. Fluids
11
,
1805
(
1999
).
12.
T.
Loiseleux
,
J.-M.
Chomaz
, and
P.
Huerre
, “
The effect of swirl on jets and wakes: Linear instability of the Rankine vortex with axial flow
,”
Phys. Fluids
10
,
1120
(
1998
).
13.
S.
Leibovich
, “
Vortex stability and breakdown: Survey and extension
,”
AIAA J.
22
,
1192
(
1984
).
14.
S.
Wang
and
Z.
Rusak
, “
The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown
,”
J. Fluid Mech.
340
,
177
(
1997
).
15.
S.
Wang
and
Z.
Rusak
, “
On the stability of an axisymmetric rotating flow in a pipe
,”
Phys. Fluids
8
,
1007
(
1996
).
16.
S.
Wang
and
Z.
Rusak
, “
On the stability of non-columnar swirling flows
,”
Phys. Fluids
8
,
1017
(
1996
).
17.
J.
Keller
,
W.
Egli
, and
W.
Exley
, “
Force- and loss-free transitions between flow states
,”
ZAMP
36
,
854
(
1985
).
18.
P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, England, 1992).
19.
L.
Rayleigh
, “
On the dynamics of revolving fluids
,”
Proc. R. Soc. London, Ser. A
93
,
148
(
1916
).
20.
L.
Howard
and
A.
Gupta
, “
On the hydrodynamic and hydromagnetic stability of swirling flows
,”
J. Fluid Mech.
14
,
463
(
1962
).
21.
H.
Ludwieg
, “
Stabilität der Strömung in einem zylindrischen Ringraum
,”
Z. Flugwiss.
8
,
135
(
1960
).
22.
S.
Leibovich
and
K.
Stewartson
, “
A sufficient condition for the instability of columnar vortices
,”
J. Fluid Mech.
126
,
335
(
1983
).
23.
G.
Batchelor
and
A.
Gill
, “
Analysis of the stability of axisymmetric jets
,”
J. Fluid Mech.
14
,
529
(
1964
).
24.
Z.
Rusak
,
S.
Wang
, and
C.
Whiting
, “
The evolution of a perturbed vortex in a pipe to axisymmetric vortex breakdown
,”
J. Fluid Mech.
366
,
211
(
1998
).
25.
S.
Leibovich
, “
Weakly nonlinear waves in rotating fluids
,”
J. Fluid Mech.
42
,
803
(
1970
).
26.
A.
Szeri
and
P.
Holmes
, “
Nonlinear stability of axisymmetric swirling flows
,”
Philos. Trans. R. Soc. London, Ser. A
326
,
327
(
1988
).
27.
Z.
Rusak
, “
The interaction of near-critical swirling flows in a pipe with inlet azimuthal vorticity perturbations
,”
Phys. Fluids
10
,
1672
(
1998
).
28.
G.
Brown
and
J.
Lopez
, “
Axisymmetric vortex breakdown. Part 2: Physical mechanisms
,”
J. Fluid Mech.
221
,
553
(
1990
).
29.
M.
Hafez
,
G.
Kuruvila
, and
M. D.
Salas
, “
Numerical study of vortex breakdown
,”
Appl. Num. Math.
2
,
291
(
1986
).
30.
R.
Kopecky
and
K.
Torrance
, “
Initiation and structure of axisymmetric eddies in a rotating stream
,”
Comput. Fluids
1
,
289
(
1973
).
31.
E.
Krause
, “
The solution to the problem of vortex breakdown
,”
Lect. Notes Phys.
371
,
35
(
1984
).
32.
D.
Darmofal
, “
The role of vorticity dynamics in vortex breakdown
,” AIAA Pap. 93-3036 (1993).
33.
D.
Snyder
and
R. E.
Spall
, “
Numerical simulation of bubble-type vortex breakdown within a tube-and-vane apparatus
,”
Phys. Fluids
12
,
603
(
2000
).
34.
P.
Beran
and
F.
Culick
, “
The role of non-uniqueness in the development of vortex breakdown in tubes
,”
J. Fluid Mech.
242
,
491
(
1992
).
35.
J.
Lopez
, “
On the bifurcation structure of axisymmetric vortex breakdown in a constricted pipe
,”
Phys. Fluids
6
,
3683
(
1994
).
36.
S.
Leibovich
, “
Waves in parallel or swirling stratified shear flows
,”
J. Fluid Mech.
93
,
401
(
1979
).
37.
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).
38.
P.
Huerre
and
P. A.
Monkewitz
, “
Absolute and convective instabilities in free shear layers
,”
J. Fluid Mech.
159
,
151
(
1985
).
39.
A. Bers, “Space-time evolution of plasma instabilities-absolute and convective,” in Handbook of Plasma Physics, edited by M. Rosenbluth and R. Sagdeev (North-Holland, Amsterdam, 1983), pp. 451–517.
40.
L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, Philadelphia, 1997).
41.
X.
Yin
,
D.
Sun
,
M.
Wei
, and
J.
Wu
, “
Absolute and convective instability character of slender viscous vortices
,”
Phys. Fluids
12
,
1062
(
2000
).
42.
J. D.
Randall
and
S.
Leibovich
, “
The critical state: A trapped wave model of vortex break-down
,”
J. Fluid Mech.
58
,
495
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.