We propose numerical methods for the estimation of the yield of reaction in laminar flows. The methods are based on backward tracking of tracer particles. In the case of fast reaction (high Damköhler number) the degree of mixing at a particular point can be calculated by a backward random-walk Monte Carlo simulation. This procedure is applicable for both chaotic and nonchaotic regions. In a chaotic flow the reaction-diffusion equation can be approximated by a one-dimensional equation in Lagrangian coordinates along the stable manifold of a fluid element. An adaptive tracking technique of the stable manifold allows the numerical quantification of the effect of the flow on a finite rate chemistry.

1.
H. A.
Stone
,
A. D.
Strook
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
2.
H.
Aref
, “
Stirring by chaotic advection
,”
J. Fluid Mech.
143
,
1
(
1984
).
3.
J.M.
Ottino
, The Kinematics of Mixing: Stretching, Chaos and Transport (Cambridge University Press, Cambridge,
1989
).
4.
H.
Aref
, “
The development of chaotic advection
,”
Phys. Fluids
14
,
1315
(
2002
).
5.
F. J.
Muzzio
and
J. M.
Ottino
, “
Dynamics of a lamellar system with diffusion and reaction: Scaling analysis and global kinetics
,”
Phys. Rev. A
40
,
7182
(
1989
).
6.
F. J.
Muzzio
and
J. M.
Ottino
, “
Diffusion and reaction in a lamellar system: Self-similarity with finite rates of reaction
,”
Phys. Rev. A
42
,
5873
(
1990
).
7.
J. M.
Ottino
, “
Mixing and chemical reactions: A tutorial
,”
Chem. Eng. Sci.
49
,
4005
(
1994
).
8.
X. Z.
Tang
and
A. H.
Boozer
, “
Finite time Lyapunov exponent and advection-diffusion equation
,”
Physica D
95
,
283
(
1996
).
9.
X. Z.
Tang
and
A. H.
Boozer
, “
A Lagrangian analysis of advection-diffusion equation for a three dimensional chaotic flow
,”
Phys. Fluids
11
,
1418
(
1999
).
10.
X. Z.
Tang
and
A. H.
Boozer
, “
Design criteria of a chemical reactor based on a chaotic flow
,”
Chaos
9
,
183
(
1999
).
11.
J.-L.
Thiffeault
, “
Advection diffusion in Lagrangian coordinates
,”
Phys. Lett. A
309
,
415
(
2003
).
12.
J.-L.
Thiffeault
and
A. H.
Boozer
, “
Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions
,”
Chaos
11
,
16
(
2001
).
13.
M. J.
Clifford
,
S. M.
Cox
, and
E. P. L.
Roberts
, “
Reaction and diffusion in a lamellar structure: The effect of the lamellar arrangement upon yield
,”
Physica A
262
,
294
(
1999
).
14.
M. J.
Clifford
,
S. M.
Cox
, and
E. P. L.
Roberts
, “
Lamellar modelling of reaction, diffusion and mixing in a two-dimensional flow
,”
Chem. Eng. J.
71
,
49
(
1998
).
15.
M. J.
Clifford
,
S. M.
Cox
, and
E. P. L.
Roberts
, “
A two-stage reaction with initially separated reactants
,”
Physica A
256
,
65
(
1998
).
16.
J. M.
Zalc
and
F. J.
Muzzio
, “
Parallel-competitive reactions in a two-dimensional chaotic flow
,”
Chem. Eng. Sci.
54
,
1053
(
1999
).
17.
E. S.
Szalai
,
J.
Kukura
,
P. E.
Arratia
, and
F. J.
Muzzio
, “
Effect of hydrodynamics on reactive mixing in laminar flows
,”
AIChE J.
49
,
168
(
2003
).
18.
M.
Liu
and
F. J.
Muzzio
, “
The curvature of material lines in chaotic cavity flows
,”
Phys. Fluids
8
,
75
(
1996
).
19.
M. M.
Alvarez
,
F. J.
Muzzio
,
S.
Cerbelli
,
A.
Adrover
, and
M.
Giona
, “
Self-similar spatiotemporal structure of intermaterial boundaries in chaotic flows
,”
Phys. Rev. Lett.
81
,
3395
(
1998
).
20.
O.
Galaktionov
,
P.
Anderson
,
G.
Peters
, and
F.
van de Vosse
, “
An adaptive front tracking technique for three-dimensional transient flows
,”
Int. J. Numer. Methods Fluids
32
,
201
(
2000
).
21.
R.
Cao
and
S. B.
Pope
, “
Numerical integration of stochastic differential equations: Weak second-order mid-point scheme for application in the composition pdf method
,”
J. Comput. Phys.
185
,
194
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.