We present numerical evidence from two dimensional simulations that the growth of the Richtmyer–Meshkov instability is suppressed in the presence of a magnetic field. A bifurcation occurs during the refraction of the incident shock on the density interface which transports baroclinically generated vorticity away from the interface to a pair of slow or intermediate magnetosonic shocks. Consequently, the density interface is devoid of vorticity and its growth and associated mixing is completely suppressed.

1.
Proceedings of the 8th International Workshop on Physics of Compressible Turbulent Mixing, California Institute of Technology, 9–14 December 2001, edited by O. Schilling.
2.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math
13
,
297
(
1960
).
3.
Ye. Ye. Meshkov, “Instability of a shock wave accelerated interface between two gases,” NASA Tech. Trans. NASA TT F-13074, 1970.
4.
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1961).
5.
K. G.
Powell
,
P. L.
Roe
,
T. J.
Linde
,
T. I.
Gombosi
, and
D. L.
DeZeeuw
, “
A solution-adaptive upwind scheme for ideal magnetohydrodynamics
,”
J. Comput. Phys.
154
,
284
(
1999
).
6.
P.
Colella
, “
Multidimensional upwind methods for hyperbolic conservation laws
,”
J. Comput. Phys.
87
,
171
(
1990
).
7.
M. J.
Berger
and
P.
Colella
, “
Local adaptive mesh refinement for shock hydrodynamics
,”
J. Comput. Phys.
82
,
64
(
1989
).
8.
P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Serafini, and B. Van Straalen, “Chombo software package for AMR applications,” Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory Report, 2002.
9.
J. F.
Hawley
and
N. J.
Zabusky
, “
Vortex paradigm for shock-accelerated density-stratified interfaces
,”
Phys. Rev. Lett.
63
,
1241
(
1989
).
10.
C. F.
Kennel
,
R. D.
Blandford
, and
P.
Coppi
, “
MHD intermediate shock discontinuities. Part 1. Rankine–Hugoniot conditions
,”
J. Plasma Phys.
42
,
299
(
1989
).
11.
J. E. Anderson, Magnetohydrodynamic Shock Waves (MIT Press, Cambridge, MA, 1963).
12.
K. O. Friedrichs and H. Kranzer, Notes on Magnetohydrodyamics VIII: Nonlinear Wave Motion (Courant Institute of Mathematical Sciences, New York University, New York, 1958).
This content is only available via PDF.
You do not currently have access to this content.