Arrays of vortices are considered for two-dimensional, inviscid flows when the functional relationship between the stream function and the vorticity is a hyperbolic sine. An exact solution as a doubly periodic array of vortices is expressed in terms of the Jacobi elliptic functions. There is a threshold value of the period parameter such that a transition from globally smooth distributions of vorticity to singular distributions occurs.
REFERENCES
1.
D.
Montgomery
, W. H.
Matthaeus
, W. T.
Stribling
, D.
Martinez
, and S.
Oughton
, “Relaxation in two dimensions and the sinh-Poisson equation
,” Phys. Fluids A
4
, 3
(1992
).2.
R.
Mallier
and S. A.
Maslowe
, “A row of counter rotating vortices
,” Phys. Fluids A
5
, 1074
(1993
).3.
R. A.
Pasmanter
, “On long-lived vortices in 2D viscous flows, most probable states of inviscid 2D flows and soliton equation
,” Phys. Fluids
6
, 1236
(1994
).4.
T.
Dauxois
, “Nonlinear stability of counter-rotating vortices
,” Phys. Fluids
6
, 1625
(1994
).5.
T.
Dauxois
, S.
Fauve
, and L.
Tuckerman
, “Stability of periodic arrays of vortices
,” Phys. Fluids
8
, 487
(1996
).6.
K. W.
Chow
, N. W. M.
Ko
, and S. K.
Tang
, “Solitons in dimensions and their applications in vortex dynamics
,” Fluid Dyn. Res.
21
, 101
(1997
).7.
K. W.
Chow
, N. W. M.
Ko
, R. C. K.
Leung
, and S. K.
Tang
, “Inviscid two dimensional vortex dynamics and a soliton expansion of the sinh-Poisson equation
,” Phys. Fluids
10
, 1111
(1998
).8.
B. N.
Kuvshinov
and T. J.
Schep
, “Double-periodic arrays of vortices
,” Phys. Fluids
12
, 3282
(2000
).9.
K. W.
Chow
, “A class of doubly periodic waves for nonlinear evolution equations
,” Wave Motion
35
, 71
(2002
).10.
M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981).
11.
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).
12.
A. H.
Nielsen
and J. Juul
Rasmussen
, “Formation and temporal evolution of the Lamb dipole
,” Phys. Fluids
9
, 982
(1997
).13.
J. S.
Hesthaven
, J. P.
Lynov
, A. H.
Nielsen
, J. Juul
Rasmussen
, M. R.
Schmidt
, E. G.
Shapiro
, and S. K.
Turitsyn
, “Dynamics of a nonlinear dipole vortex
,” Phys. Fluids
7
, 2220
(1995
).14.
V. V.
Meleshko
and G. J. F.
van Heijst
, “On Chaplygin’s investigations of two dimensional vortex structures in an inviscid fluid
,” J. Fluid Mech.
272
, 157
(1994
).15.
H. J. H.
Clercx
, S. R.
Massen
, and G. J. F.
van Heijst
, “Spontaneous spin-up during the decay of 2D turbulence in a square container with rigid boundaries
,” Phys. Rev. Lett.
80
, 5129
(1998
).16.
E. J.
Hopfinger
and G. J. F.
van Heijst
, “Vortices in rotating fluids
,” Annu. Rev. Fluid Mech.
25
, 241
(1993
).17.
B. M.
Boubnov
, S. B.
Dalziel
, and P. F.
Linden
, “Source-sink turbulence in a stratified fluid
,” J. Fluid Mech.
261
, 273
(1994
).18.
P.
Tabeling
, S.
Burkhart
, O.
Cardoso
, and H.
Willaime
, “Experimental study of freely decaying two-dimensional turbulence
,” Phys. Rev. Lett.
67
, 3772
(1991
).19.
O.
Cardoso
, D.
Marteau
, and P.
Tabeling
, “Quantitative experimental study of the free decay of quasi-two dimensional turbulence
,” Phys. Rev. E
49
, 454
(1994
).20.
S.
Julien
, J. M.
Chomaz
, and J. C.
Lasheras
, “Three-dimensional stability of periodic arrays of counter-rotating vortices
,” Phys. Fluids
14
, 732
(2002
).
This content is only available via PDF.
© 2003 American Institute of Physics.
2003
American Institute of Physics
You do not currently have access to this content.