A three-dimensional numerical simulation of an isothermal flow past a solid sphere with outflow in a linear shear flow is performed to investigate the effects of the outflow on drag and shear lift. In addition, the effects of the outflow and the fluid shear on diffusion and reaction of reactant from the surface of the sphere are also discussed. The results show that the outflow reduces the drag, and, in the linear shear flow, acts to push the sphere to the lower fluid velocity side and promote the negative lift for the high particle Reynolds numbers. The diffusion and reaction of the reactant from the surface of the sphere are strongly affected by the outflow and the fluid shear because these factors cause the deformation of vortices appearing behind the sphere.

1.
L.
Schiller
and
J.
Lumley
, “
On the equation of motion for a particle in turbulent fluid
,”
Appl. Sci. Res., Sect. A
6
,
114
(
1956
).
2.
S. A.
Morsi
and
A. J.
Alexander
, “
An investigation of particle trajectories in two-phase systems
,”
J. Fluid Mech.
55
,
193
(
1972
).
3.
G. H.
Bailey
,
I. W.
Slater
, and
P.
Eisenklam
, “
Dynamic equations and solutions for particles undergoing mass transfer
,”
Br. Chem. Eng.
15
,
912
(
1970
).
4.
P.
Chuchottaworn
,
A.
Fujinami
, and
K.
Asano
, “
Numerical analysis of the effect of mass injection or suction on drag coefficients of a sphere
,”
J. Chem. Eng. Jpn.
16
,
18
(
1982
).
5.
M.
Renksizbulut
and
M. C.
Yuen
, “
Experimental study of droplet evaporation in a high-temperature air stream
,”
ASME J. Heat Transfer
105
,
384
(
1983
).
6.
K.
Asano
,
I.
Taniguchi
,
K.
Maeda
, and
H.
Kosuge
, “
Simultaneous measurement of drag coefficients and mass transfer of a volatile drop falling freely
,”
J. Chem. Eng. Japan
21
,
367
(
1988
).
7.
M.
Renksizbulut
and
M. C.
Yuen
, “
Numerical study of droplet evaporation in a high-temperature stream
,”
ASME J. Heat Transfer
105
,
389
(
1983
).
8.
R. I.
Sujith
,
G. A.
Waldherr
,
J. I.
Jagoda
, and
B. T.
Zinn
, “
On the effect of evaporation on droplet drag
,”
ASME J. Fluids Eng.
118
,
863
(
1996
).
9.
P. G.
Saffman
, “
The lift on a small sphere in a shear flow
,”
J. Fluid Mech.
22
,
385
(
1965
);
corrigendum, 31, 624 (1968).
10.
J. B.
McLaughlin
, “
Inertial migration of a small sphere in linear shear flow
,”
J. Fluid Mech.
224
,
261
(
1991
).
11.
R.
Mei
, “
An approximate expression for the shear lift force on a spherical particle at finite Reynolds number
,”
Int. J. Multiphase Flow
18
,
145
(
1992
).
12.
R.
Kurose
and
S.
Komori
, “
Drag and lift forces on a rotating sphere in a linear shear flow
,”
J. Fluid Mech.
384
,
183
(
1999
).
13.
D.
Dandy
and
H.
Dwyer
, “
A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer
,”
J. Fluid Mech.
216
,
381
(
1990
).
14.
S. M.
Tieng
and
A. C.
Yan
, “
Experimental investigation on convective heat transfer of heated spinning sphere
,”
Int. J. Heat Mass Transfer
36
,
599
(
1993
).
15.
H. D.
Nguyen
,
S.
Paik
, and
J.
Chung
, “
Unsteady mixed convection heat transfer from a solid sphere: the conjugate problem
,”
Int. J. Heat Mass Transfer
36
,
4443
(
1993
).
16.
H.
Chattopadhyay
and
S. K.
Dash
, “
Numerical visualization of convective heat transfer from a sphere—with and without radial mass efflux
,”
Int. J. Numer. Methods Heat Fluid Flow
5
,
705
(
1995
).
17.
N.
Kawahara
,
A. L.
Yarin
,
G.
Brenn
,
O.
Kastner
, and
F.
Durst
, “
Effect of acoustic streaming on the mass transfer from a sublimating sphere
,”
Phys. Fluids
12
,
912
(
2000
).
18.
S.
Balachander
and
M. Y.
Ha
, “
Unsteady heat transfer from a sphere in a uniform cross-flow
,”
Phys. Fluids
13
,
3714
(
2001
).
19.
H. M.
Blackburn
, “
Mass and momentum transport from a sphere in steady and oscillatory flows
,”
Phys. Fluids
14
,
3997
(
2002
).
20.
R.
Misumi
,
M.
Ishidu
, and
S.
Komori
, “
The effects of bubbles on mass transfer across breaking air–water interface
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
66
,
2327
(
2000
) (in Japanese).
21.
S. Komori and R. Misumi, “The effects of bubbles on mass transfer across the breaking air–water interface,” in Gas Transfer at Water Surfaces, AGU Geophysical Monograph Series 127, edited by M. A. Donelan, W. M. Drennan, E. S. Saltzman, and R. W. Wanninkof (American Geophysical Union, Washington, D.C., 2002), pp. 285–290.
22.
H.
Hanazaki
, “
A numerical study of three-dimensional stratified flow past a sphere
,”
J. Fluid Mech.
192
,
393
(
1988
).
23.
F. C.
Thames
,
J. F.
Thompson
,
C. W.
Mastin
, and
R. L.
Walker
, “
Numerical solutions for viscous and potential flow about arbitrary two-dimensional bodies using body-fitted coordinate systems
,”
J. Comput. Phys.
24
,
245
(
1977
).
24.
T. Kawahara and K. Kuwahara, “Computation of high Reynolds number flow around a circular cylinder with surface roughness,” AIAA Paper 84-0340, 1987.
25.
H. Schlichting, Boundary-Layer Theory, 6th ed. (McGraw-Hill, New York, 1968).
26.
K. A.
Cliffe
and
D. A.
Lever
, “
Isothermal flow past a blowing sphere
,”
Int. J. Numer. Methods Fluids
5
,
709
(
1985
).
27.
R. S.
Miller
and
J.
Bellan
, “
Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream
,”
J. Fluid Mech.
384
,
293
(
1999
).
28.
F. Akamatsu, H. Saitoh, and M. Katsuki, “Numerical study on combustion characteristics of splay flat flames,” Proceedings of the 4th KSME/JSME Thermal Engineering Conference 1, 2000, pp. 259–264.
29.
F. Akamatsu, H. Saitoh, and M. Katsuki, “Numerical simulation of splay flat flames stabilized in a laminar counterflow,” Proceedings of the 8th Conference on Liquid Atomization and Splay Systems, ICLASS-2000, 2000, pp. 25–32.
30.
R. J. Kee, F. M. Rupley, and J. A. Miller, “Chemkin-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” SANDIA Report SAND89-8009B, 1989.
31.
R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, “A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties,” SANDIA Report, SAND86-8246, 1986.
32.
B. Abramzon and W. A. Sirignano, “Approximation theory of a single droplet vaporization in a convective field: effects of variable properties, Stefan flow and transient liquid heating,” ASME–JSME Thermal Engineering Joint Conference, 1987, Vol. 1, p. 11.
33.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980).
34.
C. T.
Crowe
,
M. P.
Sharma
, and
D. E.
Stock
, “
The particle-source-in cell (PSI-CELL) model for gas-droplet flows
,”
ASME J. Fluids Eng.
99
,
325
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.