A gas in a time-independent state under a uniform weak gravity in a general domain is considered. The asymptotic behavior of the gas in the limit that the Knudsen number of the system tends to zero (or in the continuum limit) is investigated on the basis of the Boltzmann system for the case where the flow velocity vanishes in this limit, and the fluid-dynamic-type equations and their associated boundary conditions describing the behavior of the gas in the continuum limit are derived. The equations, different from the Navier–Stokes ones, contain thermal stress and infinitesimal velocity amplified by the inverse of the Knudsen number. The system is applied to analysis of the behavior of a gas between two parallel plane walls heated from below (Bénard problem), and a bifurcated strongly distorted temperature field is found in infinitesimal velocity and gravity. This is an example showing that the Navier–Stokes system fails to describe the correct behavior of a gas in the continuum limit.

1.
L. Boltzmann, Lectures on Gas Theory (English translation by S. G. Brush) (University of California Press, California, 1964).
2.
D. Hilbert, “Mathematische Probleme” (Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900), Gött. Nachr. (Vadenhöck & Ruprecht, Göttingen, 1900), pp. 253–297;
English translation by
M.
Winston
,
Bull. Am. Math. Soc.
37
,
407
(
2000
).
3.
D. Hilbert, Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen (Teubner, Leipzig, 1912), Chap. 22.
4.
S.
Chapman
, “
On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a nonuniform simple monoatomic gas
,”
Philos. Trans. R. Soc. London
216
,
279
(
1916
).
5.
D. Enskog, “Kinetische Theorie der Vorgänge in mässig verdünnten Gasen,” dissertation, Uppsala (1917).
6.
H.
Grad
, “
Asymptotic theory of the Boltzmann equation
,”
Phys. Fluids
6
,
147
(
1963
).
7.
H. Grad, “Asymptotic theory of the Boltzmann equation II,” in Rarefied Gas Dynamics, edited by J. A. Laurmann (Academic, New York, 1963), pp. 26–59.
8.
H. Grad, “Singular and nonuniform limits of solutions of the Boltzmann equation,” in Transport Theory, edited by R. Bellman, G. Birkhoff, and I. Abu-Shumays (American Mathematical Society, Providence, 1969), pp. 269–308.
9.
J. S. Darrozes, “Approximate solutions of the Boltzmann equation for flows past bodies of moderate curvature,” in Rarefied Gas Dynamics, edited by L. Trilling and H. Y. Wachman (Academic, New York, 1969), Vol. I, pp. 111–120.
10.
Y. Sone, “Asymptotic theory of flow of a rarefied gas over a smooth boundary I,” in Rarefied Gas Dynamics, edited by L. Trilling and H. Y. Wachman (Academic, New York, 1969), Vol. I, pp. 243–253.
11.
Y. Sone, “Asymptotic theory of flow of a rarefied gas over a smooth boundary II,” in Rarefied Gas Dynamics, edited by D. Dini (Editrice Tecnico Scientifica, Pisa, 1971), Vol. II, pp. 737–749.
12.
T.
Nishida
, “
Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation
,”
Commun. Math. Phys.
61
,
119
(
1978
).
13.
S.
Ukai
and
K.
Asano
, “The Euler limit and initial layer of the nonlinear Boltzmann equation,” Hokkaido Math. J. 12, 311 (1983).
14.
Y. Sone, “Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers,” in Advances in Kinetic Theory and Continuum Mechanics, edited by R. Gatignol and Soubbaramayer (Springer-Verlag, Berlin, 1991), pp. 19–31.
15.
C.
Bardos
,
F.
Golse
, and
D.
Levermore
, “
Fluid dynamic limits of kinetic equations II: Convergence proofs for the Boltzmann equation
,”
Commun. Pure Appl. Math.
46
,
667
(
1993
).
16.
N. Maslova, Nonlinear Evolution Equations, Kinetic Approach (World Scientific, Singapore, 1993).
17.
L. Bellomo, Lecture Notes on the Mathematical Theory of the Boltzmann Equation (World Scientific, Singapore, 1995), Lecture 2.
18.
Y.
Sone
,
K.
Aoki
,
S.
Takata
,
H.
Sugimoto
, and
A. V.
Bobylev
, “
Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation
,”
Phys. Fluids
8
,
628
(
1996
);
erratum,
Y.
Sone
,
K.
Aoki
,
S.
Takata
,
H.
Sugimoto
, and
A. V.
Bobylev
,
Phys. Fluids
8
,
841
(
1996
).
19.
L.
Arkeryd
and
A.
Nouri
, “
On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model
,”
J. Stat. Phys.
99
,
993
(
2000
).
20.
Y.
Sone
,
C.
Bardos
,
F.
Golse
, and
H.
Sugimoto
, “
Asymptotic theory of the Boltzmann system for a steady flow of a slightly rarefied gas with a finite Mach number: General theory
,”
Eur. J. Mech. B/Fluids
19
,
325
(
2000
).
21.
F. Bouchut, F. Golse, and M. Pulvirenti, Kinetic Equation and Asymptotic Theory (Gauthier-Villars, Paris, 2000).
22.
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1961).
23.
E. L. Koschmieder, Bénard Cells and Taylor Vortices (Cambridge University Press, Cambridge, 1993), Part I.
24.
A. L.
Garcia
and
C.
Penland
, “
Fluctuating hydrodynamics and principal oscillation pattern analysis
,”
J. Stat. Phys.
64
,
1121
(
1991
).
25.
S.
Stefanov
and
C.
Cercignani
, “
Monte Carlo simulation of Bénard’s instability in a rarefied gas
,”
Eur. J. Mech. B/Fluids
11
,
543
(
1992
).
26.
Y. Sone, K. Aoki, H. Sugimoto, and H. Motohashi, “The Bénard problem for a rarefied gas dynamics,” in Rarefied Gas Dynamics, edited by J. Harvey and G. Lord (Oxford University Press, Oxford, 1995), Vol. I, pp. 135–141.
27.
Y.
Sone
,
K.
Aoki
, and
H.
Sugimoto
, “
The Bénard problem for a rarefied gas: Formation of steady flow patterns and stability of array of rolls
,”
Phys. Fluids
9
,
3898
(
1997
).
28.
C. L.
Pekeris
and
Z.
Alterman
, “
Solution of the Boltzmann–Hilbert integral equation II. The coefficients of viscosity and heat conduction
,”
Proc. Natl. Acad. Sci. U.S.A.
43
,
998
(
1957
).
29.
T.
Ohwada
and
Y.
Sone
, “
Analysis of thermal stress slip flow and negative thermophoresis using the Boltzmann equation for hard-sphere molecules
,”
Eur. J. Mech. B/Fluids
11
,
389
(
1992
).
30.
Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhäuser, Boston, 2002).
31.
M. N.
Kogan
,
V. S.
Galkin
, and
O. G.
Friedlender
, “
Stresses produced in gases by temperature and concentration inhomogeneities. New type of free convection
,”
Sov. Phys. Usp.
19
,
420
(
1976
).
32.
C.
Bardos
,
R. E.
Caflisch
, and
B.
Nicolaenko
, “
The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas
,”
Commun. Pure Appl. Math.
39
,
323
(
1986
).
33.
C. Cercignani, “Half-space problem in the kinetic theory of gases,” in Trends in Applications of Pure Mathematics to Mechanics, edited by E. Kröner and K. Kirchgässner (Springer-Verlag, Berlin, 1986), pp. 35–50.
34.
F.
Coron
,
F.
Golse
, and
C.
Sulem
, “
A classification of well-posed kinetic layer problems
,”
Commun. Pure Appl. Math.
41
,
409
(
1988
).
35.
F.
Golse
and
F.
Poupaud
, “
Stationary solutions of the linearized Boltzmann equation in a half-space
,”
Math. Methods Appl. Sci.
11
,
483
(
1989
).
36.
Y. Sone and K. Aoki, Molecular Gas Dynamics (Asakura, Tokyo, 1994) (in Japanese).
37.
T.
Ohwada
,
Y.
Sone
, and
K.
Aoki
, “
Numerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
1
,
1588
(
1989
).
38.
Y.
Sone
, “
Thermal creep in rarefied gas
,”
J. Phys. Soc. Jpn.
21
,
1836
(
1966
).
39.
P.
Welander
, “
On the temperature jump in a rarefied gas
,”
Ark. Fys.
7
,
507
(
1954
).
40.
Y.
Sone
,
T.
Ohwada
, and
K.
Aoki
, “
Temperature jump and Knudsen layer in a rarefied gas over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
1
,
363
(
1989
).
41.
Y.
Sone
, “
Effect of sudden change of wall temperature in a rarefied gas
,”
J. Phys. Soc. Jpn.
20
,
222
(
1965
).
42.
The term ∂(Γ2(n)∂T̂(n+1)/∂xi)/∂xi on the left-hand side in Eq. (85) can be transformed, with replacement of Γ2(n) by Γ2(n+1), in the form (∂2/∂x12+∂2/∂x22)∫Γ2(n+1)dT̂.
43.
Y. Sone, “Continuum gas dynamics in the light of kinetic theory and new features of rarefied gas flows,” in Rarefied Gas Dynamics, edited by C. Shen (Peking University Press, Beijing, 1997), pp. 3–24.
44.
Y.
Sone
, “
Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit
,”
Annu. Rev. Fluid Mech.
32
,
779
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.