An assessment of the ability of power laws to describe the mean velocity profile in the overlap region of a zero pressure gradient turbulent boundary layer is reported. The experiments were performed in a wind tunnel on smooth and four different types of rough surfaces at moderate Reynolds numbers. A novel modification to the power law velocity profile is proposed to account for the effect of surface roughness in the overlap region. This modification is analogous to the use of a roughness function to produce a downward shift in the logarithmic velocity profile. The roughness parameters in the proposed equation more accurately follow the effect of roughness on skin friction than does the roughness shift ΔU+. The present study shows that power laws can be used to effectively describe the mean velocity profile over a wider range than a log law for both smooth and rough surfaces.

1.
J. M.
Osterlund
,
A. V.
Johansson
,
H. M.
Nagib
, and
M. H.
Hites
, “
A note on the overlap region in turbulent boundary layers
,”
Phys. Fluids
12
,
1
(
2000
).
2.
G. I.
Barenblatt
,
A. J.
Chorin
, and
V. M.
Prostokishin
, “
A note on the intermediate region in turbulent boundary layers
,”
Phys. Fluids
12
,
2159
(
2000
).
3.
G. I.
Barenblatt
, “
Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypothesis and analysis
,”
J. Fluid Mech.
248
,
513
(
1993
).
4.
G. I.
Barenblatt
and
V. M.
Prostokinshin
, “
Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data
,”
J. Fluid Mech.
248
,
521
(
1993
).
5.
W. K.
George
and
L.
Castillo
, “
Zero-pressure gradient turbulent boundary layer
,”
Appl. Mech. Rev.
50
,
689
(
1997
).
6.
M. F. Tachie, D. J. Bergstrom, and R. Balachander, “Use of power law velocity profiles in turbulent boundary layers,” Proceedings of the 3rd International Symposium on Turbulence, Heat and Mass Transfer, Nagoya, Japan (Aichi Shuppan, Tokyo, 2000), p. 183.
7.
R.
Panton
, “
Power law or log law; that is not the question
,”
Bull. Am. Phys. Soc.
45
,
160
(
2000
).
8.
M.
Oberlack
, “
A unified approach for symmetries in plane parallel turbulent shear flows
,”
J. Fluid Mech.
427
,
299
(
2001
).
9.
N.
Afzal
, “
Power law and log law velocity profiles in fully developed turbulent boundary layer flow: Equivalent relations at large Reynolds numbers
,”
Acta Mech.
151
,
195
(
2001
).
10.
G. I.
Barenblatt
,
A. J.
Chorin
, and
V. M.
Prostokishin
, “
Self-similar intermediate structures in turbulent boundary layers at large Reynolds numbers
,”
J. Fluid Mech.
410
,
263
(
2000
).
11.
D. J.
Bergstrom
,
M. F.
Tachie
, and
R.
Balachandar
, “
Application of power laws to low Reynolds number boundary layers on smooth and rough surfaces
,”
Phys. Fluids
13
,
3277
(
2001
).
12.
M. F. Tachie, “Open channel turbulent boundary layers and wall jets on rough surfaces,” Ph.D. thesis, University of Saskatchewan, 2001.
13.
H. Schlichting, “Experimental investigation of the problem of surface roughness,” NACA translation, TN-832, 1937.
14.
C. F.
Colebrook
and
C. M.
White
, “
Experiments with fluid motion in roughened pipes
,”
Proc. R. Soc. London, Ser. A
161
,
367
(
1937
).
15.
F. A. MacMillan, “Experiments on Pitot-tubes in shear-flow,” Aero. Res. Counc. R. & M. 3028 (1956).
16.
A. E.
Perry
,
S.
Hafez
, and
M. S.
Chong
, “
A possible reinterpretation of the Princeton superpipe data
,”
J. Fluid Mech.
439
,
395
(
2001
).
17.
D. J.
Bergstrom
,
N. A.
Kotey
, and
M. F.
Tachie
, “
The effects of surface roughness on the mean velocity profile in a turbulent boundary layer
,”
ASME Trans. J. Fluids Eng.
124
,
664
(
2002
).
18.
P. A.
Krogstad
,
R. A.
Antonia
, and
L. W. B.
Browne
, “
Comparison between rough- and smooth-wall turbulent boundary layers
,”
J. Fluid Mech.
245
,
599
(
1992
).
19.
N. A. Kotey, “Effects of surface roughness on the mean velocity profile in a turbulent boundary layer,” M.Sc. thesis, University of Saskatchewan, 2001.
20.
J. Nikuradse, “Laws of flow in rough pipes,” NACA TM 1292, 1950 [translated from “Stromungsgesetze in rauhen Rohren,” Forsch. Arb. Ing.-Wes. No. 361 (1933)].
21.
L.
Djenidi
,
Y.
Dubief
, and
R. A.
Antonia
, “
Advantages of using a power law in a low Reθ turbulent boundary layer
,”
Exp. Fluids
22
,
348
(
1997
).
22.
M. V.
Zagarola
,
A. E.
Perry
, and
A. J.
Smits
, “
Log laws or power laws: The scaling in the overlap region
,”
Phys. Fluids
9
,
2094
(
1997
).
23.
M. F.
Tachie
,
D. J.
Bergstrom
, and
R.
Balachandar
, “
Rough wall turbulent boundary layers in shallow open channel flow
,”
ASME Trans. J. Fluids Eng.
120
,
434
(
2000
).
24.
F. M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1974).
25.
L.
Prandtl
and
H.
Schlichting
, “
Das Widerstandagesetz rouher Platten
,”
Werft, Reedere, Hafen
15
,
1
(
1934
).
26.
P. Bradshaw and N. Gregory, “The determination of local turbulent skin friction from observations in the viscous sublayer,” Aero. Res. Counc. R. & M. 3202 (1959).
This content is only available via PDF.
You do not currently have access to this content.