The motion of a quantum vortex in superfluid helium is considered in the localized induction approximation. In this approximation the instantaneous velocity of quantum vortex is proportional to the local curvature and is parallel to the vector, which is a linear combination of the local binormal and the principal normal to the vortex line. The motion in the direction of the principal normal is specific for a quantum vortex and implies that the vortex shrinks, in contrast to the classical vortex in an ideal fluid. In the present work we deal with two four-parameter classes of shape-preserving solutions (one with increasing and one with decreasing spatial scale) resulting from equations governing the curvature and the torsion. The solutions describe vortex lines whose motion is equivalent to a transformation being a superposition of a homothety and a rotation. In a particular case when the transformation is a pure homothety, we find analytic solutions for the curvature and the torsion. In the general case, when the transformation is a superposition of a nontrivial rotation and a homothety, the asymptotics of the solutions of the first class are given explicitly and are related to the parameters characterizing the transformation. It is found that the solutions of the second class (with decreasing scale) either have asymptotes or are periodic (when the transformation is a pure homothety) or else exhibit chaotic behavior.

1.
S. K.
Nemirowskii
and
W.
Fiszdon
, “
Chaotic quantized vortices and hydrodynamic processes in superfluid helium
,”
Rev. Mod. Phys.
67
,
37
(
1995
).
2.
C. F.
Barenghi
,
D. C.
Samuels
,
G. H.
Bauer
, and
R. J.
Donnelly
, “
Superfluid vortex lines in a model of turbulent flow
,”
Phys. Fluids
9
,
2631
(
1997
).
3.
D.
Kivotides
,
C. F.
Barenghi
, and
D. C.
Samuels
, “
Fractal dimension of superfluid turbulence
,”
Phys. Rev. Lett.
87
,
155301
(
2001
).
4.
T.
Araki
,
M.
Tsubota
, and
S. K.
Nemirowskii
, “
Energy spectrum of superfluid turbulence with no normal component
,”
Phys. Rev. Lett.
89
,
145301
(
2002
).
5.
C. F.
Barenghi
and
D. C.
Samuels
, “
Evaporation of a packet of quantized vorticity
,”
Phys. Rev. Lett.
89
,
155302
(
2002
).
6.
K. W.
Schwarz
, “
Three-dimensional vortex dynamics in superfluid He4: Line–line and line–boundary interactions
,”
Phys. Rev. B
31
,
5782
(
1985
).
7.
K. W.
Schwarz
, “
Three-dimensional vortex dynamics in superfluid He4: Homogeneous superfluid turbulence
,”
Phys. Rev. B
38
,
2398
(
1988
).
8.
K. W.
Schwarz
and
J. R.
Rosen
, “
Transient behavior of superfluid turbulence in a large channel
,”
Phys. Rev. B
44
,
7563
(
1991
).
9.
T.
Lipniacki
, “
Evolution of the line-length density and anisotropy of quantum tangle in He4,
Phys. Rev. B
64
,
214516
(
2001
).
10.
R. L.
Ricca
,
D. C.
Samuels
, and
C. F.
Barenghi
, “
Evolution of vortex knots
,”
J. Fluid Mech.
391
,
29
(
1999
).
11.
H.
Hasimoto
, “
A soliton on a vortex filament
,”
J. Fluid Mech.
51
,
477
(
1972
).
12.
R. L.
Ricca
, “
Physical interpretation of certain invariants for vortex filament motion under LIA
,”
Phys. Fluids A
4
,
938
(
1992
).
13.
K.
Nakayama
,
H.
Segur
, and
M.
Wadati
, “
Integrability and the motion of curves
,”
Phys. Rev. Lett.
69
,
2603
(
1992
).
14.
A.
Onuki
, “
Line motion in terms of nonlinear Schrödinger equations
,”
Prog. Theor. Phys.
74
,
979
(
1985
).
15.
J.
Langer
and
R.
Perline
, “
Poisson geometry of the filament equation
,”
J. Nonlinear Sci.
1
,
71
(
1991
).
16.
R. L.
Ricca
, “
The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics
,”
Fluid Dyn. Res.
18
,
245
(
1996
).
17.
T.
Lipniacki
, “
Quasi-static solutions for quantum vortex motion under the localized induction approximation
,”
J. Fluid Mech.
477
,
321
(
2003
).
18.
T.
Lipniacki
, “
Evolution of quantum vortices following reconnection, in He4,
Eur. J. Mech. B/Fluids
19
,
361
(
2000
).
19.
D.
Kivotides
,
J. C.
Vassilicos
,
C. F.
Barenghi
, and
D. C.
Samuels
, “
Kelvin waves cascade in superfluid turbulence
,”
Phys. Rev. Lett.
86
,
3080
(
2001
).
20.
R. L.
Ricca
, “
The effect of torsion on the motion of a helical vortex filament
,”
J. Fluid Mech.
273
,
241
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.