We experimentally investigate the evolution and interaction of two Richtmyer–Meshkov-unstable gas cylinders using concentration field visualization and particle image velocimetry. The heavy-gas (SF6) cylinders have an initial spanwise separation of S/D (where D is the cylinder diameter) and are simultaneously impacted by a planar, Mach 1.2 shock. The resulting flow morphologies are highly reproducible and highly sensitive to the initial separation, which is varied from S/D≈1.2 to 2.0. The effects of the cylinder–cylinder interaction are quantified using both visualization and high-resolution velocimetry. Vorticity fields reveal that a principal interaction effect is the weakening of the inner vortices of the system. We observe a nonlinear, threshold-type behavior of inner vortex formation around S/D=1.5. A correlation-based ensemble-averaging procedure extracts the persistent character of the unstable flow structures, and permits decomposition of the concentration fields into mean (deterministic) and fluctuating (stochastic) components.

1.
E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza
4
,
151
(
1969
).
2.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
8
,
297
(
1960
).
3.
J.
Lindl
,
R.
McCrory
, and
E.
Campbell
, “
Progress toward ignition and burn propagation in inertial confinement fusion
,”
Phys. Today
45
(
9
),
32
(
1992
).
4.
W.
Arnett
,
J.
Bahcall
,
R.
Kirshner
, and
S.
Woosley
, “
Supernova 1987A
,”
Annu. Rev. Astron. Astrophys.
27
,
629
(
1989
).
5.
J.
Yang
,
T.
Kubota
, and
E. E.
Zukoski
, “
Applications of shock-induced mixing to supersonic combustion
,”
AIAA J.
31
,
854
(
1993
).
6.
J.
Jacobs
and
J.
Sheeley
, “
Experimental study of incompressible Richtmyer–Meshkov instability
,”
Phys. Fluids
8
,
405
(
1996
).
7.
M.
Jones
and
J.
Jacobs
, “
A membraneless experiment for the study of Richtmyer–Meshkov instability of a shock-accelerated gas
,”
Phys. Fluids
9
,
3078
(
1997
).
8.
O.
Sadot
,
L.
Erez
,
U.
Alon
,
D.
Oron
,
L.
Levin
,
G.
Erez
,
G.
Ben-Dor
, and
D.
Shvarts
, “
Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability
,”
Phys. Rev. Lett.
80
,
1654
(
1998
).
9.
J.
Jacobs
,
D.
Jenkins
,
D.
Klein
, and
R.
Benjamin
, “
Nonlinear growth of the shock-accelerated instability of a thin fluid layer
,”
J. Fluid Mech.
295
,
23
(
1995
).
10.
P.
Rightley
,
P.
Vorobieff
, and
R.
Benjamin
, “
Evolution of a shock-accelerated thin fluid layer
,”
Phys. Fluids
9
,
1770
(
1997
).
11.
P.
Rightley
,
P.
Vorobieff
,
R.
Martin
, and
R.
Benjamin
, “
Experimental observations of the mixing transition in a shock-accelerated gas curtain
,”
Phys. Fluids
11
,
186
(
1999
).
12.
K.
Prestridge
,
P.
Rightley
,
P.
Vorobieff
,
R.
Benjamin
, and
N.
Kurnit
, “
Simultaneous density-field visualization and PIV of a shock-accelerated gas curtain
,”
Exp. Fluids
29
,
339
(
2000
).
13.
K.
Prestridge
,
P.
Vorobieff
,
P.
Rightley
, and
R.
Benjamin
, “
Validation of an instability growth model using particle image velocimetry measurements
,”
Phys. Rev. Lett.
84
,
4353
(
2000
).
14.
M.
Brouillette
, “
The Richtmyer–Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
(
2002
).
15.
N.
Zabusky
, “
Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments
,”
Annu. Rev. Fluid Mech.
31
,
495
(
1999
).
16.
R.
Samtaney
and
N.
Zabusky
, “
Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: Models and scaling laws
,”
J. Fluid Mech.
269
,
45
(
1994
).
17.
J. M.
Picone
and
J. P.
Boris
, “
Vorticity generation by shock propagation through bubbles in a gas
,”
J. Fluid Mech.
189
,
23
(
1988
).
18.
J. J.
Quirk
and
S.
Karni
, “
On the dynamics of a shock-bubble interaction
,”
J. Fluid Mech.
318
,
129
(
1996
).
19.
C. Zoldi, “A numerical and experimental study of a shock-accelerated heavy gas cylinder,” Ph.D. thesis, Department of Applied Mathematics, State University of New York at Stony Brook, 2002.
20.
J. F.
Haas
and
B.
Sturtevant
, “
Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
,”
J. Fluid Mech.
181
,
41
(
1987
).
21.
J.
Jacobs
, “
The dynamics of shock-accelerated light and heavy gas cylinders
,”
Phys. Fluids A
5
,
2239
(
1993
).
22.
K. Prestridge, C. Zoldi, P. Vorobieff, P. Rightley, and R. Benjamin, “Experiments and simulations of instabilities in a shock-accelerated gas cylinder,” Los Alamos Technical Report No. LA-UR-00-3973, 2000.
23.
A. Cook and P. Miller (private communication).
24.
N. Zabusky (private communication).
25.
M.
Brouillette
and
B.
Sturtevant
, “
Growth induced by multiple shock waves normally incident on plane gaseous surfaces
,”
Physica D
37
,
248
(
1989
).
26.
M.
Brouillette
and
B.
Sturtevant
, “
Experiments on the Richtmyer–Meshkov instability: Small-scale perturbations on a plane interface
,”
Phys. Fluids A
5
,
916
(
1993
).
27.
R.
Bonazza
and
B.
Sturtevant
, “
X-ray measurements of growth rates at a gas interface accelerated by shock waves
,”
Phys. Fluids
8
,
2496
(
1996
).
28.
J.
Jacobs
,
D.
Klein
,
D.
Jenkins
, and
R.
Benjamin
, “
Instability growth patterns of a shock-accelerated thin fluid layer
,”
Phys. Rev. Lett.
70
,
583
(
1993
).
29.
J.
Budzinski
,
R.
Benjamin
, and
J.
Jacobs
, “
Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer
,”
Phys. Fluids
6
,
3510
(
1994
).
30.
C.
Tomkins
,
K.
Prestridge
,
P.
Rightley
,
P.
Vorobieff
, and
R.
Benjamin
, “
Flow morphologies of two shock-accelerated unstable gas cylinders
,”
J. Vis.
5
,
273
(
2002
).
31.
R. J.
Adrian
, “
Particle-imaging techniques for experimental fluid mechanics
,”
Annu. Rev. Fluid Mech.
23
,
261
(
1991
).
32.
C. E.
Willert
and
M.
Gharib
, “
Digital particle image velocimetry
,”
Exp. Fluids
10
,
181
(
1991
).
33.
I.
Grant
, “
Particle-image velocimetry: A review
,”
Proc. Inst. Mech. Eng.
211
,
55
(
1997
).
34.
K. Christensen, S. Soloff, and R. Adrian, “PIV Sleuth: Integrated particle image velocimetry (PIV) interrogation/validation software,” TAM Report No. 943, University of Illinois at Urbana–Champaign, 2000.
35.
M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, Berlin, 1998).
36.
C. D.
Meinhart
,
A. K.
Prasad
, and
R. J.
Adrian
, “
A parallel digital processor for particle image velocimetry
,”
Meas. Sci. Technol.
4
,
619
(
1993
).
37.
A. K.
Prasad
,
R. J.
Adrian
,
C. C.
Landreth
, and
P. W.
Offutt
, “
Effect of resolution on the speed and accuracy of particle image velocimetry interrogation
,”
Exp. Fluids
30
,
105
(
1992
).
38.
J.
Westerweel
, “
Efficient detection of spurious vectors in particle image velocimetry data
,”
Exp. Fluids
16
,
236
(
1994
).
39.
Y. Nakamura, A. Leonard, and P. Spalart, “Vortex simulation of an inviscid shear layer,” AIAA Pap. No. 82-0948, AIAA/ASME Third Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, 1982.
40.
W. Rider (private communication).
41.
C. Zoldi (private communication).
42.
R. J.
Adrian
,
K. T.
Christensen
, and
Z.-C.
Lui
, “
Analysis and interpretation of instantaneous turbulent velocity fields
,”
Exp. Fluids
29
,
275
(
2000
).
43.
D. L. Reuss, R. J. Adrian, C. C. Landreth, D. T. French, and T. D. Fansler, “Instantaneous planar measurements of velocity and large-scale vorticity and strain rate using particle image velocimetry,” SAE Paper No. 890616, 1989.
44.
S. M. Soloff, “An investigation of the small-scale structure in a turbulent pipe flow using high resolution particle image velocimetry,” M.S. thesis, Department of Theoretical and Applied Mechanics, University of Illinois at Urbana–Champaign, 1997.
45.
C. Cranfill (private communication).
46.
W. Rider (private communication).
This content is only available via PDF.
You do not currently have access to this content.