Lagrangian data for velocity, scalars, and energy and scalar dissipation from direct numerical simulations are used to validate Lagrangian mixing models for inert passive scalars in stationary isotropic turbulence. The scalar fluctuations are nearly Gaussian, and, as a result of production by uniform mean gradients, statistically stationary. Comparisons are made for Taylor-scale Reynolds numbers in the range 38 to about 240 and Schmidt numbers in the range 1/8 to 1. Model predictions for one-point, one-time Eulerian statistics (Eulerian correspondence) and one-particle, two-time Lagrangian statistics (Lagrangian correspondence) are examined. Two scalar mixing models, namely the Lagrangian Fokker–Planck model and the Lagrangian colored-noise (LCN) model, are proposed and written in terms of stochastic differential equations (SDE) with specified drift and diffusion terms. Both of these models rely on statistics of the scalar field conditioned upon the energy dissipation, as provided by the Lagrangian spectral relaxation (LSR) model. With the exception of the scalar dissipation, the models are shown to capture the Reynolds and Schmidt-number dependence of the Lagrangian integral time scales. However, the LCN model provides a more realistic description of the Lagrangian scalar fluctuations as differentiable time series having the correct form of the scalar autocorrelation function. Further extensions of the new mixing models to non-Gaussian scalars are conceptually straightforward, but require a closure for the scalar-conditioned scalar dissipation rate matrix. Likewise, accurate prediction of joint statistics for differential diffusion between different scalars with unequal molecular diffusivities will require the formulation of a multiscale SDE similar to the LSR model.

1.
S. B.
Pope
, “
PDF methods for turbulent reactive flows
,”
Prog. Energy Combust. Sci.
11
,
119
(
1985
).
2.
S. B.
Pope
, “
Lagrangian pdf methods for turbulent flows
,”
Annu. Rev. Fluid Mech.
26
,
23
(
1994
).
3.
R. O.
Fox
, “
The Lagrangian spectral relaxation model of the scalar dissipation in homogeneous turbulence
,”
Phys. Fluids
9
,
2364
(
1997
).
4.
R. O.
Fox
, “
The Lagrangian spectral relaxation model for differential diffusion in homogeneous turbulence
,”
Phys. Fluids
11
,
1550
(
1999
).
5.
P. K.
Yeung
, “
Correlations and conditional statistics in differential diffusion: Scalars with mean scalar gradients
,”
Phys. Fluids
10
,
2621
(
1998
).
6.
S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).
7.
G. A.
Voth
,
K.
Satyanarayanan
, and
E.
Bodenschatz
, “
Lagrangian acceleration measurements at large Reynolds numbers
,”
Phys. Fluids
10
,
2268
(
1998
).
8.
S.
Ott
and
J.
Mann
, “
An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow
,”
J. Fluid Mech.
422
,
207
(
2000
).
9.
N.
Mordant
,
P.
Metz
,
O.
Michel
, and
J. F.
Pinton
, “
Measurement of Lagrangian velocity in fully developed turbulence
,”
Phys. Rev. Lett.
87
,
214501
(
2001
).
10.
P. K.
Yeung
, “
Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations
,”
J. Fluid Mech.
427
,
241
(
2001
).
11.
B. L.
Sawford
and
P. K.
Yeung
, “
Eulerian acceleration statistics as a discriminator between Lagrangian stochastic models in uniform shear flow
,”
Phys. Fluids
12
,
2033
(
2000
).
12.
B. L.
Sawford
and
P. K.
Yeung
, “
Lagrangian statistics in uniform shear flow: Direct numerical simulation and Lagrangian stochastic models
,”
Phys. Fluids
13
,
2627
(
2001
).
13.
P.
Vedula
,
P. K.
Yeung
, and
R. O.
Fox
, “
Dynamics of scalar dissipation in isotropic turbulence: A numerical and modeling study
,”
J. Fluid Mech.
433
,
29
(
2001
).
14.
J. Villermaux and J. C. Devillon, “Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique,” Proc., 2nd International Symposium on Chemical Reaction Engineering (Elsevier, New York, 1972).
15.
L.
Valiño
and
C.
Dopazo
, “
A binomial Langevin model for turbulent mixing
,”
Phys. Fluids A
3
,
3034
(
1991
).
16.
S.
Subramaniam
and
S. B.
Pope
, “
A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees
,”
Combust. Flame
115
,
487
(
1998
).
17.
H.
Chen
,
S.
Chen
, and
R. S.
Kraichnan
, “
Probability distribution of a stochastically advected scalar field
,”
Phys. Rev. Lett.
63
,
2657
(
1989
).
18.
B. L. Sawford, private communication (2001).
19.
P. K.
Yeung
, “
Lagrangian investigations of turbulence
,”
Annu. Rev. Fluid Mech.
34
,
115
(
2002
).
20.
R-C.
Lien
and
E. A.
D’Asaro
, “
The Kolmogorov constant for the Lagrangian velocity spectrum and structure function
,”
Phys. Fluids
14
,
4456
(
2002
).
21.
M. R.
Overholt
and
S. B.
Pope
, “
Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence
,”
Phys. Fluids
8
,
3128
(
1996
).
22.
P. K.
Yeung
and
S. B.
Pope
, “
Lagrangian statistics from direct numerical simulations of isotropic turbulence
,”
J. Fluid Mech.
207
,
531
(
1989
).
23.
R. O.
Fox
, “
On velocity-conditioned scalar mixing in homogeneous turbulence
,”
Phys. Fluids
8
,
2678
(
1996
).
24.
R. O. Fox and P. K. Yeung, “Forward and backward spectral transfer in the modeling of scalar mixing in homogeneous turbulence,” Proc., 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco, CA, July 1999.
25.
P. Vedula, “Study of scalar transport in turbulent flows using direct numerical simulations,” Ph.D. thesis, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA (2001).
26.
J. P. H.
Sanders
and
I.
Gökalp
, “
Scalar dissipation rate modeling in variable density turbulent axisymmetric jets and diffusion flames
,”
Phys. Fluids
10
,
938
(
1998
).
27.
R. O.
Fox
, “
The spectral relaxation model of the scalar dissipation rate in homogeneous turbulence
,”
Phys. Fluids
7
,
1082
(
1995
).
28.
C. M.
Cha
,
G.
Kosály
, and
H.
Pitsch
, “
Modeling extinction and reignition in turbulent nonpremixed combustion using a doubly conditional moment closure approach
,”
Phys. Fluids
13
,
3824
(
2001
).
29.
R. O. Fox, Computational Models for Turbulent Reacting Flows (Cambridge University Press, Cambridge, 2003).
30.
C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, New York, 1990).
31.
R. O.
Fox
, “
Improved Fokker–Planck model for the joint scalar, scalar gradient PDF
,”
Phys. Fluids
6
,
334
(
1994
).
32.
A.
Kerstein
, “
A linear-eddy model of turbulent scalar transport and mixing
,”
Combust. Sci. Technol.
60
,
391
(
1998
).
33.
A.
Kerstein
, “
One-dimensional turbulence model
,”
J. Fluid Mech.
392
,
277
(
1999
).
34.
T.
Dreeben
and
S. B.
Pope
, “
Wall-function treatment in PDF methods for turbulent flows
,”
Phys. Fluids
9
,
2692
(
1997
).
35.
P. K.
Yeung
and
B. L.
Sawford
, “
Random sweeping hypothesis for passive scalars in isotropic turbulence
,”
J. Fluid Mech.
459
,
129
(
2002
).
36.
B. L.
Sawford
, “
Reynolds number effects in Lagrangian stochastic models of turbulent dispersion
,”
Phys. Fluids A
3
,
1577
(
1991
).
37.
S. B.
Pope
, “
A stochastic Lagrangian model for acceleration in turbulent flows
,”
Phys. Fluids
14
,
2447
(
2002
).
38.
R. O.
Fox
,
P. K.
Yeung
, and
P.
Vedula
, “
Lagrangian description of nonpremixed passive scalars in differential diffusion: Model development
,”
Bull. Am. Phys. Soc.
45
,
58
(
2000
).
39.
A.
Juneja
and
S. B.
Pope
, “
A DNS study of turbulent mixing of two passive scalars
,”
Phys. Fluids
8
,
2161
(
1996
).
40.
C. M. Cha, P. Trouillet, and R. O. Fox, “Lagrangian PDF mixing models for reacting flows,” Proceedings of the 2002 CTR Summer Program, Stanford, CA, July–August 2002.
This content is only available via PDF.
You do not currently have access to this content.