We study velocity derivative skewness S of incompressible homogeneous isotropic turbulence. By using exact relations of isotropic turbulence and various typical models of second-order structure function DLL(r) and energy spectrum E(k), it is found that −S=C(kc/kd)2 when Taylor-microscale Reynolds number Rλ is high. Here, C is a coefficient, kc is the center wavenumber of energy dissipation spectrum, and kd is the Kolmogorov wavenumber. Therefore, the problem of Reynolds number dependence of S becomes the problem of Reynolds number dependence of kc/kd. In the inertial range, we have scaling DLL(r)∼rζ2 and E(k)∼k−(ζ2+1),ζ2 is the second-order inertial-range scaling exponent. Equality −S=C(kc/kd)2 is valid in the case of ζ2>2/3 (intermittency models of Kolmogorov’s 1962 theory) as well as in the case of ζ2=2/3 (Kolmogorov’s 1941 theory).

1.
C. W.
Van Atta
and
R. A.
Antonia
, “
Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives
,”
Phys. Fluids
23
,
252
(
1980
).
2.
M.
Nelkin
, “
Universality and scaling in fully developed turbulence
,”
Adv. Phys.
43
,
143
(
1994
).
3.
K. R.
Sreenivasan
and
R. A.
Antonia
, “
The phenomenology of small-scale turbulence
,”
Annu. Rev. Fluid Mech.
29
,
435
(
1997
).
4.
A. N.
Kolmogorov
, “
Local structure of turbulence in an incompressible fluid for very large Renolds number
,”
Dokl. Akad. Nauk SSSR
30
,
299
(
1941
);
A. N.
Kolmogorov
, “
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number
,”
J. Fluid Mech.
13
,
82
(
1962
);
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (Cambridge University Press, Cambridge, 1975);
U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).
5.
R. H.
Kraichnan
, “
Models of intermittency in hydrodynamic turbulence
,”
Phys. Rev. Lett.
65
,
575
(
1990
).
6.
A.
Vincent
and
M.
Meneguzzi
, “
The spatial structure and statistical properties of homogeneous turbulence
,”
J. Fluid Mech.
225
,
1
(
1991
).
7.
R.
Betchov
, “
An inequality concerning the production of vorticity in isotropic turbulence
,”
J. Fluid Mech.
1
,
497
(
1956
).
8.
J.
Qian
, “
A closure theory of intermittency of turbulence
,”
Phys. Fluids
29
,
2165
(
1986
).
9.
S. G.
Saddoughi
and
S. V.
Veeravalli
, “
Local isotropy in turbulent boundary layer at high Reynolds number
,”
J. Fluid Mech.
268
,
333
(
1994
).
10.
J.
Qian
, “
Real and pseudo Kolmogorov constant
,”
J. Phys. Soc. Jpn.
62
,
926
(
1993
);
J.
Qian
, “
Experimental values of Kolmogorov constant of turbulence
,”
J. Phys. Soc. Jpn.
65
,
2502
(
1996
).
11.
L.
Sirovich
,
L.
Smith
, and
V.
Yakhot
, “
Energy spectrum of homogeneous and isotropic turbulence in far dissipation range
,”
Phys. Rev. Lett.
72
,
344
(
1994
).
12.
D.
Loshe
and
A. M.
Groeling
, “
Bottleneck effects in turbulence: Scaling phenomena in r versus p space
,”
Phys. Rev. Lett.
74
,
1747
(
1995
);
S.
Grossmann
, “
Asymptotic dissipation rate in turbulence
,”
Phys. Rev. E
51
,
6275
(
1995
);
G.
Stolovitzky
,
K. R.
Sreenivasan
, and
A.
Juneja
, “
Scaling functions and scaling exponents in turbulence
,”
Phys. Rev. E
48
,
R3217
(
1993
);
G.
Stolovitzky
and
K. R.
Sreenivasan
, “
Intermittency the second-order structure function, and the turbulent energy-dissipation rate
,”
Phys. Rev. E
52
,
3242
(
1995
).
13.
J.
Qian
, “
Universal equilibrium range of turbulence
,”
Phys. Fluids
27
,
2229
(
1984
);
J.
Qian
, “
Variational approach to the closure problem of turbulence theory
,”
Phys. Fluids
26
,
2098
(
1983
).
14.
D. C. Leslie, Developments in the Theory of Turbulence (Clarendon, Oxford, 1983).
15.
J.
Qian
, “
Inertial range and the finite Reynolds number effect of turbulence
,”
Phys. Rev. E
55
,
337
(
1997
).
16.
R.
Benzi
,
S.
Ciliberto
,
R.
Tripiccione
,
C.
Baudet
,
F.
Massaioli
, and
S.
Succi
, “
Extended self-similarity in turbulent flows
,”
Phys. Rev. E
48
,
R29
(
1993
);
R.
Benzi
,
S.
Ciliberto
,
C.
Baudet
, and
G. R.
Chavarria
, “
On the scaling of three-dimensional homogeneous and isotropic turbulence
,”
Physica D
80
,
385
(
1995
).
17.
J.
Qian
, “
Scaling exponents of the second-order structure function of turbulence
,”
J. Phys. A
31
,
3193
(
1998
).
18.
J.
Qian
, “
Normal and anomalous scaling of turbulence
,”
Phys. Rev. E
58
,
7325
(
1998
);
J.
Qian
, “
Closure approach to high-order structure function of turbulence
,”
Phys. Rev. Lett.
84
,
646
(
2000
);
J.
Qian
, “
Quasi-closure and scaling of turbulence
,”
Int. J. Mod. Phys. B
15
,
1085
(
2001
).
19.
J.
Qian
, “
Slow decay of the finite Reynolds number effect of turbulence
,”
Phys. Rev. E
60
,
3409
(
1999
).
20.
I.
Arad
,
B.
Dhruva
,
S.
Kurien
,
V. S.
L’vov
,
I.
Procaccia
, and
K. R.
Sreenivasan
, “
Extraction of anisotropic contributions in turbulent flows
,”
Phys. Rev. Lett.
81
,
5330
(
1998
).
21.
S.
Kurien
,
V. S.
L’vov
,
I.
Procaccia
, and
K. R.
Sreenivasan
, “
Scaling structure of the velocity statistics in atmospheric boundary layers
,”
Phys. Rev. E
61
,
407
(
2000
).
22.
J.
Qian
, “
Scaling of structure functions in homogeneous shear-flow turbulence
,”
Phys. Rev. E
63
,
036301
(
2002
).
23.
A. A.
Praskovsky
, “
Experimental verification of the Kolmogorov refined similarity hypothesis
,”
Phys. Fluids A
4
,
2589
(
1992
).
24.
J.
Qian
, “
Correlation coefficients between the velocity difference and local average dissipation of turbulence
,”
Phys. Rev. E
54
,
981
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.