High-resolution direct numerical simulations (DNSs) of incompressible homogeneous turbulence in a periodic box with up to 40963 grid points were performed on the Earth Simulator computing system. DNS databases, including the present results, suggest that the normalized mean energy dissipation rate per unit mass tends to a constant, independent of the fluid kinematic viscosity ν as ν→0. The DNS results also suggest that the energy spectrum in the inertial subrange almost follows the Kolmogorov k−5/3 scaling law, where k is the wavenumber, but the exponent is steeper than −5/3 by about 0.1.

1.
K. R.
Sreenivasan
, “
On the universality of the Kolmogorov constant
,”
Phys. Fluids
7
,
2778
(
1995
).
2.
Y.
Yamazaki
,
T.
Ishihara
, and
Y.
Kaneda
, “
Effects of wavenumber truncation on high-resolution direct numerical simulation of turbulence
,”
J. Phys. Soc. Jpn.
71
,
777
(
2002
).
3.
T. Ishihara and Y. Kaneda, “High resolution DNS of incompressible homogeneous forced turbulence time dependence of the statistics,” in Proceedings of the International Workshop on Statistical Theories and Computational Approaches to Turbulence, edited by Y. Kaneda and T. Gotoh (Springer, Berlin, 2002), p. 179.
4.
M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Kaneda, “16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the Earth Simulator,” http://www.sc-2002.org/paperpdfs/pap.pap273.pdf (2002). The energy spectrum for Run 4096-1 in Ref. 4 is from the data at t=1.5.
5.
K. R.
Sreenivasan
, “
An update on the energy dissipation rate in isotropic turbulence
,”
Phys. Fluids
10
,
528
(
1998
).
6.
L. P.
Wang
,
S.
Chen
,
J. G.
Brasseur
, and
J. C.
Wyngaard
, “
Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations
,”
J. Fluid Mech.
309
,
113
(
1996
).
7.
J.
Jiménez
,
A. A.
Wray
,
P. G.
Saffman
, and
R. S.
Rogallo
, “
The structure of intense vorticity in isotropic turbulence
,”
J. Fluid Mech.
255
,
65
(
1993
).
8.
N.
Cao
,
S.
Chen
, and
G. D.
Doolen
, “
Statistics and structures of pressure in isotropic turbulence
,”
Phys. Fluids
11
,
2235
(
1999
).
9.
P. K.
Yeung
and
Y.
Zhou
, “
On the universality of the Kolmogorov constant in numerical simulations of turbulence
,”
Phys. Rev. E
56
,
1746
(
1997
).
10.
T.
Gotoh
,
D.
Fukayama
, and
T.
Nakano
, “
Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation
,”
Phys. Fluids
14
,
1065
(
2002
).
11.
G.
Boffetta
and
G. P.
Romano
, “
Structure functions and energy dissipation dependence on Reynolds number
,”
Phys. Fluids
14
,
3453
(
2002
).
12.
I.
Arad
,
B.
Druvah
,
S.
Kurien
,
V. S.
L’vov
,
I.
Procaccia
, and
K. R.
Sreenivasan
, “
The extraction of anisotropic contributions in turbulent flows
,”
Phys. Rev. Lett.
81
,
5330
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.