In pipe flow, for large Reynolds numbers, Draad and Nieuwstadt [J. Fluid Mech. 361, 297 (1998)] showed that the small Coriolis force due to the Earth’s rotation may affect the mean flow profile of liquids substantially. In this paper, the development of small disturbances superimposed on a laminar mean flow affected by the Coriolis force is investigated analytically. The investigation is focused on the time development and the transient growth of streamwise-independent disturbances since they are the most amplified disturbances without the Coriolis effect included. The results show that the modification of the parabolic mean flow caused by the Coriolis force significantly affects the transient disturbance amplification when the Reynolds number (R) is high. For example, with R=9000 and the Ekman number Ek=5.23, due to the Coriolis effect, the peak value of the transient disturbance amplification becomes about two-thirds of the peak value obtained in the case where the mean flow is unaffected by the Coriolis force. When the Reynolds number is decreased, the reduction of the transient growth becomes smaller.

1.
L. H.
Gustavsson
, “
Energy growth of three-dimensional disturbances in plane Poiseuille flow
,”
J. Fluid Mech.
224
,
241
(
1991
).
2.
K. M.
Butler
and
B. F.
Farrell
, “
Three-dimensional optimal perturbations in viscous shear flow
,”
Phys. Fluids A
4
,
1637
(
1992
).
3.
S. J.
Chapman
, “
Subcritical transition in channel flows
,”
J. Fluid Mech.
451
,
35
(
2002
).
4.
L.
Boberg
and
U.
Brosa
, “
Onset of turbulence in a pipe
,”
Z. Naturforsch. A
43a
,
697
(
1988
).
5.
L.
Bergström
, “
Initial algebraic growth of small angular dependent disturbances in pipe Poiseuille flow
,”
Stud. Appl. Math.
87
,
61
(
1992
).
6.
L.
Bergström
, “
Optimal growth of small disturbances in pipe Poiseuille flow
,”
Phys. Fluids A
5
,
2710
(
1993
).
7.
P. J.
Schmid
and
D. S.
Henningson
, “
Optimal energy density growth in Hagen–Poiseuille flow
,”
J. Fluid Mech.
277
,
197
(
1994
).
8.
L.
Bergström
, “
Evolution of laminar disturbances in pipe Poiseuille flow
,”
Eur. J. Mech. B/Fluids
12
,
749
(
1993
).
9.
L.
Bergström
, “
Transient properties of a developing laminar disturbance in pipe Poiseuille flow
,”
Eur. J. Mech. B/Fluids
14
,
601
(
1995
).
10.
A. Kaskel, “Experimental study of the stability of pipe flow. II. Development of disturbance generator,” Technical Report No. 32–138, Jet Propulsion Laboratory, California Institute of Technology, 1961.
11.
E. W.
Mayer
and
E.
Reshotko
, “
Evidence for transient disturbance growth in a 1961 pipe-flow experiment
,”
Phys. Fluids
9
,
242
(
1997
).
12.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
,
578
(
1993
).
13.
A. E.
Trefethen
,
L. N.
Trefethen
, and
P. J.
Schmid
, “
Spectra and pseudospectra for pipe Poiseuille flow
,”
Comput. Methods Appl. Mech. Eng.
1926
,
413
(
1999
).
14.
A.
Meseguer
and
L. N.
Trefethen
, “
Linearized pipe flow to Reynolds number 107,
J. Comput. Phys.
186
,
178
(
2003
).
15.
A. A.
Draad
and
F. T. M.
Nieuwstadt
, “
The Earth’s rotation and laminar pipe flow
,”
J. Fluid Mech.
361
,
297
(
1998
).
16.
G. S.
Benton
, “
The effect of the Earth’s rotation on laminar flow in pipes
,”
Trans. ASME, J. Appl. Mech.
23
,
123
(
1956
).
17.
J.
Berman
and
L. F.
Mockros
, “
Flow in a rotating non-aligned straight pipe
,”
J. Fluid Mech.
144
,
297
(
1984
).
18.
L.
Bergström
, “
Nonlinear behaviour of transiently amplified disturbances in pipe Poiseuille flow
,”
Eur. J. Mech. B/Fluids
14
,
719
(
1995
).
19.
M. T.
Landahl
, “
Wave breakdown and turbulence
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
28
,
735
(
1975
).
20.
M. T.
Landahl
, “
A note on an algebraic instability of inviscid parallel shear flows
,”
J. Fluid Mech.
98
,
243
(
1980
).
21.
L. B.
Bergström
, “
Transient growth of small disturbances in a Jeffrey fluid flowing through a pipe
,”
Fluid Dyn. Res.
32
,
29
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.