The stable axisymmetric convective states of a binary liquid enclosed in a vertical cylinder heated from below are exhaustively and accurately identified by pseudo-spectral numerical integration. In order to gain some insight on the influence that nearby boundaries can exert on flow dynamics, three aspect ratios (1/2, 1, and 2), as well as two types of lateral kinematic boundary conditions (either no-slip or free-slip) are investigated. The ranges over which stable quiescent, oscillatory and steady convective states extend and coexist are given. The bifurcations leading to transitions from one branch of solutions to another, as well as those that occur along the oscillatory branch, are analyzed. The most significant effect of varying boundary conditions and aspect ratio involves the route from oscillatory to steady convection. For a given configuration, that route consists of a period doubling cascade followed by chaos, or a subcritical generalized Hopf (or Neimark–Sacker) bifurcation, or a homoclinic bifurcation. The dynamics of thermal convection of enclosed binary mixtures is clearly very sensitive to both boundary conditions and aspect ratio.

1.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
2.
U.
Müller
, “
Convection in cylindrical containers at supercritical Rayleigh numbers
,”
Physica D
97
,
180
(
1996
).
3.
R.
Touihri
,
H.
Ben Hadid
, and
D.
Henry
, “
On the onset of convective instabilities in cylindrical cavities heated from below. I. Pure thermal case
,”
Phys. Fluids
11
,
2078
(
1999
).
4.
B.
Hof
,
P. G. J.
Lucas
, and
T.
Mullin
, “
Flow state multiplicity in convection
,”
Phys. Fluids
11
,
2815
(
1999
).
5.
S. S.
Leong
, “
Numerical study of Rayleigh–Bénard convection in a cylinder
,”
Numer. Heat Transfer, Part A
41
,
673
(
2002
).
6.
J. K. Platten and J. C. Legros, Convection in Liquids (Springer-Verlag, Berlin, 1984).
7.
P.
Kolodner
,
S.
Slimani
,
N.
Aubry
, and
R.
Lima
, “
Characterization of dispersive chaos and related states of binary-fluid convection
,”
Physica D
85
,
165
(
1995
).
8.
W.
Barten
,
M.
Lücke
,
M.
Kamps
, and
R.
Schmitz
, “
Convection in binary fluid mixture. I. Extended traveling-wave and stationary states
,”
Phys. Rev. E
51
,
5636
(
1995
).
9.
M. Lücke, W. Barten, P. Büchel, C. Fütterer, C. Hollinger, and Ch. Jung, “Pattern formation in binary fluid convection and in systems with throughflow,” in Evolution of Structures in Dissipative Continuous Systems, edited by F. H. Busse and S. C. Müller (Springer, New York, 1998).
10.
G. R.
Hardin
,
R. L.
Sani
,
D.
Henry
, and
B.
Roux
, “
Buoyancy-driven instability in a vertical cylinder: binary fluids with Soret effect. Part I: general theory and stationary stability results
,”
Int. J. Numer. Methods Fluids
10
,
79
(
1990
).
11.
I.
Mercader
,
M.
Net
, and
E.
Knobloch
, “
Binary fluid convection in a cylinder
,”
Phys. Rev. E
51
,
339
(
1995
).
12.
P.
Kolodner
, “
Repeated transients of weakly nonlinear traveling-wave convection
,”
Phys. Rev. E
47
,
1038
(
1993
).
13.
O.
Batiste
,
I.
Mercader
,
M.
Net
, and
E.
Knobloch
, “
Onset of oscillatory binary fluid convection in finite containers
,”
Phys. Rev. E
59
,
6730
(
1999
).
14.
O.
Batiste
,
M.
Net
,
I.
Mercader
, and
E.
Knobloch
, “
Oscillatory binary fluid convection in large aspect-ratio containers
,”
Phys. Rev. Lett.
86
,
2309
(
2001
).
15.
M.
Wanschura
,
H. C.
Kuhlmann
, and
H. J.
Rath
, “
Three-dimensional instability of axisymmetric buoyant convection in cylinders heated from below
,”
J. Fluid Mech.
326
,
399
(
1996
).
16.
R. P.
Behringer
, “
Rayleigh–Bénard convection and turbulence in liquid helium
,”
Rev. Mod. Phys.
57
,
657
(
1985
).
17.
G. W. T.
Lee
,
P.
Lucas
, and
A.
Tyler
, “
Onset of Rayleigh–Bénard convection in binary liquid mixtures of 3He in 4He,
J. Fluid Mech.
135
,
235
(
1983
).
18.
J. W.
Swift
and
K.
Wiesenfeld
, “
Suppression of period doubling in symmetric systems
,”
Phys. Rev. Lett.
52
,
705
(
1984
).
19.
E.
Knobloch
,
D. R.
Moore
,
J.
Toomre
, and
N. O.
Weiss
, “
Transitions to chaos in two-dimensional double-diffusive convection
,”
J. Fluid Mech.
166
,
409
(
1986
).
20.
A.
Batoul
,
H.
Kallouf
, and
G.
Labrosse
, “Une méthode de résolution directe (pseudospectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée,” C. R. Acad. Sci. Paris 319, 1455 (1994).
21.
G.
Labrosse
,
E.
Tric
,
H.
Khallouf
, and
M.
Betrouni
, “
A direct (pseudo-spectral) solver of the 2D/3D Stokes problem: Transition to unsteadiness of natural-convection flow in a differentially heated cubical cavity
,”
Numer. Heat Transfer, Part B
31
,
261
(
1997
).
22.
E.
Leriche
and
G.
Labrosse
, “
High-order direct Stockes solvers with or without temporal splitting: Numerical investigations of their comparative properties
,”
SIAM J. Sci. Comput. (USA)
22
,
1386
(
2000
).
23.
E.
Tric
,
G.
Labrosse
, and
M.
Betrouni
, “
A first incursion into the 3D structure of natural convection of air in a differentially heated cubical cavity, from accurate numerical solutions
,”
Int. J. Heat Mass Transfer
43
,
4043
(
2000
).
24.
P. Manneville, Dissipative Structures and Weak Turbulence (Academic, San Diego, 1990).
25.
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).
26.
E.
Knobloch
, “
Oscillatory convection in binary mixtures
,”
Phys. Rev. A
34
,
1538
(
1986
).
27.
E.
Knobloch
and
D. R.
Moore
, “
Minimal model of binary fluid convection
,”
Phys. Rev. A
42
,
4693
(
1990
).
28.
H. E.
Huppert
and
D. R.
Moore
, “
Nonlinear double-diffusive convection
,”
J. Fluid Mech.
78
,
821
(
1976
).
29.
D. R.
Moore
,
N. O.
Weiss
, and
J. M.
Wilkins
, “
Asymmetric oscillations in thermosolutal convection
,”
J. Fluid Mech.
233
,
561
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.