In this paper we numerically investigate the motion of viscoelastic liquids passing through two-dimensional periodic arrays of cylindrical particles using the finite element method. The viscoelastic liquid is modeled by the Chilcott–Rallison version of the finitely extensible, nonlinear elastic (FENE) dumbbell model. The permeability and the viscoelastic stress distribution are studied as functions of the dimensionless relaxation time De and the dimensionless wave number kD, where k=2π/λ is the wave number, λ is the distance between the particles in the flow direction and D is the cylinder diameter. The porosity and D are held fixed. Our simulations show that for a fixed value of De the viscoelastic permeability increases with kD, but, as is the case for Newtonian fluid [Alcocer, Kumar, and Singh, Phys. Rev. E 59, 711 (1999)], this increase is not monotonic. The permeability decreases between kD≈5.0, where it is locally maximum, and kD≈7.7, where it is locally minimum. The difference between the locally maximum and minimum values of permeability increases with increasing De. When De=O(1) the locally minimum value of the permeability is ∼40% smaller than the value at the local maximum. This implies that a substantial change in permeability can be achieved by changing the distance between the particles in the flow direction while keeping De, D, and porosity fixed.

1.
F.
Alcocer
,
V.
Kumar
, and
P.
Singh
, “
Permeability of periodic porous media
,”
Phys. Rev. E
59
,
711
(
1999
).
2.
J. Bear, Dynamics of Fluids in Porous Media (Elsevier, New York, 1972).
3.
R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 1960).
4.
R. J. M. DeWiest, Flow through Porous Media (Academic, New York, 1969).
5.
J. E.
Drummond
and
M. I.
Tahir
, “
Laminar viscous flow through regular arrays of parallel solid cylinders
,”
Int. J. Multiphase Flows
10
,
515
(
1984
).
6.
G.
Georgiou
,
S.
Momani
,
M. J.
Crochet
, and
K.
Walters
, “
Newtonian and non-Newtonian flow in a channel obstructed by an antisymmetric array of cylinders
,”
J. Non-Newtonian Fluid Mech.
40
,
255
(
1991
).
7.
J. J. L.
Higdon
and
G. D.
Ford
, “
Permeability of three-dimensional models of fibrous porous media
,”
J. Fluid Mech.
308
,
341
(
1996
).
8.
G. W.
Jackson
and
D. F.
James
, “
The permeability of fibrous porous media
,”
Can. J. Chem. Eng.
64
,
364
(
1986
).
9.
D. F.
James
and
D. R.
Mclaren
, “
The laminar flow of dilute polymer solutions through porous media
,”
J. Fluid Mech.
70
,
733
(
1975
).
10.
T. D.
Papathanasiou
, “
A structure oriented micromechanical model for viscous flow through square arrays of fiber clusters
,”
Composites Sci. Technology
56
,
1055
(
1996
).
11.
S.
Rodriguez
,
C.
Romero
,
M. L.
Sargenti
,
A. J.
Muller
,
A. E.
Saez
, and
J. A.
Odell
, “
Flow of polymer solutions through porous media
,”
J. Non-Newtonian Fluid Mech.
49
,
63
(
1993
).
12.
R. E.
Larson
and
J. J. L.
Higdon
, “
Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow
,”
Phys. Fluids A
1
,
38
(
1989
).
13.
A. W.
Liu
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: comparisons of predictions for microstructure and flow fields
,”
J. Non-Newtonian Fluid Mech.
77
,
153
(
1998
).
14.
R. J.
Marshall
and
A. B.
Metzner
, “
Flow of viscoelastic fluids through porous media
,”
Ind. Eng. Chem. Fundam.
6
,
393
(
1967
).
15.
W. L.
Olbricht
, “
Pore-scale prototypes of multiphase flow in porous media
,”
Annu. Rev. Fluid Mech.
28
,
187
(
1996
).
16.
A.
Souvaliotis
and
A. N.
Beris
, “
Spectral collocation domain decomposition method for viscoelastic flow simulation in model porous geometry
,”
Comput. Methods Appl. Mech. Eng.
129
,
9
(
1996
).
17.
K. K.
Talwar
and
B.
Khomami
, “
Application of high order finite elements to viscoelastic flow in porous media
,”
J. Rheol.
36
,
1377
(
1992
).
18.
H.
Hasimoto
, “
On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres
,”
J. Fluid Mech.
5
,
317
(
1959
).
19.
A. S.
Sangani
and
A.
Acrivos
, “
Slow flow through a periodic array of spheres
,”
Int. J. Multiphase Flows
8
,
343
(
1982
).
20.
A. A.
Zick
and
G. M.
Homsy
, “
Stokes flow through periodic arrays of spheres
,”
J. Fluid Mech.
115
,
13
(
1982
).
21.
P.
Singh
and
D. D.
Joseph
, “
Dynamics of fluidized suspensions of spheres of finite size
,”
Int. J. Multiphase Flows
21
,
1
(
1995
).
22.
M. D.
Chilcott
and
J. M.
Rallison
, “
Creeping flow of dilute polymer solutions past cylinders and spheres
,”
J. Non-Newtonian Fluid Mech.
29
,
381
(
1988
).
23.
P.
Singh
and
L. G.
Leal
, “
Finite element simulation of the start-up problem for a viscoelastic problem in an eccentric cylinder geometry using third-order upwind scheme
,”
Theor. Comput. Fluid Dyn.
5
,
107
(
1993
).
24.
M.
Tabata
and
S.
Fujima
, “
An upwind finite element scheme for high Reynolds number flows
,”
Int. J. Numer. Methods Fluids
14
,
305
(
1991
).
25.
P.
Singh
,
Ph.
Caussignac
,
A.
Fortes
,
D. D.
Joseph
, and
T.
Lundgren
, “
Stability of periodic arrays of cylinders across the stream by direct simulation
,”
J. Fluid Mech.
205
,
553
(
1989
).
26.
A. S.
Sangani
and
A.
Acrivos
, “
Slow flow past periodic arrays of cylinders with application to heat transfer
,”
Int. J. Multiphase Flows
8
,
193
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.