Using the self-similar symmetry of a diffusing front, we develop a linear spectral theory for miscible fingering at inception that accurately captures the destabilization of localized disturbances (with large transverse wavelengths compared to the front width) by the unsteady front. Our theory predicts a generic selected wavelength (4πηD/U0 for gravity fingering, where η is the transverse to longitudinal dispersion ratio, and an additional factor proportional to the logarithm of the mobility ratio for viscous fingering) at the small time of O(D/U02), where D is the dispersion coefficient or diffusivity in the flow direction and U0 is the displacement velocity. This wavelength then grows in time and approaches a universal asymptotic wavelength coarsening dynamics of 2D5/U02)1/8(t)3/8, where t is the dimensional time, for all small-amplitude miscible fingering phenomena in a slot or in porous media. The 38 exponent in time is due to a unique long-wave stabilization mechanism due to transverse convection, which escapes prior quasisteady theory. Explicit and generic scalings are then derived for gravity and viscous miscible fingering phenomena and are favorably compared to experimental and numerical results on linear coarsening dynamics.

1.
T. K.
Perkins
,
O. C.
Johnston
, and
C. H.
Hoffman
, “
Mechanics of viscous fingering in miscible systems
,”
Soc. Pet. Eng. J.
5
,
301
(
1965
).
2.
R. A.
Wooding
, “
Growth of fingers at an unstable diffusion interface in a porous medium or Hele-Shaw cell
,”
J. Fluid Mech.
39
,
477
(
1969
).
3.
G. M.
Homsy
, “
Viscous fingering in porous media
,”
Annu. Rev. Fluid Mech.
19
,
271
(
1987
).
4.
D.
Loggia
,
N.
Rakotomalala
,
D.
Salin
, and
Y. C.
Yortsos
, “
The effect of mobility gradients on viscous instabilities in miscible flows in porous media
,”
Phys. Fluids
11
,
740
(
1999
).
5.
W. B.
Zimmerman
and
G. M.
Homsy
, “
Nonlinear viscous fingering in miscible displacement with anisotropic dispersion
,”
Phys. Fluids A
3
,
1859
(
1991
).
6.
H. H.
Hu
and
D. D.
Joseph
, “
Miscible displacement in a Hele-Shaw cell
Z. Angew. Math. Phys.
43
,
626
(
1992
).
7.
C. T.
Tan
and
G. M.
Homsy
, “
Stability of miscible displacements in porous media: Rectilinear flow
,”
Phys. Fluids
29
,
3549
(
1986
).
8.
O.
Manickam
and
G. M.
Homsy
, “
Stability of miscible displacements in porous media with non-monotonic viscosity profiles
,”
Phys. Fluids A
5
,
1356
(
1993
).
9.
R. L.
Pego
and
M. I.
Weinstein
, “
Asymptotic stability of solitary waves
,”
Commun. Math. Phys.
104
,
305
(
1994
).
10.
H.-C.
Chang
,
E. A.
Demekhin
, and
E.
Kalaidin
, “
Generation and suppression of radiation by solitary pulses
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
58
,
1246
(
1998
).
11.
S. M.
Troian
,
E.
Herbolzheimer
,
S. A.
Safran
, and
J. F.
Joanny
, “
Fingering instabilities of driven spreading films
,”
Europhys. Lett.
10
,
25
(
1989
).
12.
Y.
Ye
and
H.-C.
Chang
, “
A spectral theory for fingering on a prewetted plane
,”
Phys. Fluids
11
,
2494
(
1999
).
13.
H.-C.
Chang
,
E. A.
Demekhin
, and
E. N.
Kaladin
, “
Interaction dynamics of solitary waves on a falling film
,”
J. Fluid Mech.
294
,
123
(
1995
).
14.
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 1984).
15.
F. J.
Hickernell
and
Y. C.
Yortsos
, “
Linear stability of miscible displacement processes in porous media in the absence of dispersion
,”
Stud. Appl. Math.
74
,
93
(
1986
).
16.
G. I. Barenblatt, Similarity, Self-Similarity and Intermediate Asymptotics (Consultants Bureau, New York, 1979).
17.
M.
Cheng
and
H.-C.
Chang
, “
A generalized sideband stability theory via center manifold projection
,”
Phys. Fluids A
2
,
1364
(
1990
).
18.
V.
Balakotaiah
and
H.-C.
Chang
, “
Dispersion of chemical solutes in chromatographs and reactors
,”
Philos. Trans. R. Soc. London, Ser. A
351
,
39
(
1995
).
19.
D. L.
Koch
and
J. F.
Brady
, “
Dispersion in fixed beds
,”
J. Fluid Mech.
154
,
399
(
1985
).
20.
H. A.
Tchelepi
,
F. M.
Orr
, Jr.
,
N.
Rakotomalala
,
D.
Salin
, and
R.
Woumeni
, “
Dispersion, permeability heterogeneity, and viscous fingering: Acoustic experimental observations and particle-tracking simulations
,”
Phys. Fluids A
5
,
1558
(
1993
).
21.
C.
Welty
and
L. W.
Gelhar
, “
Stochastic analysis of the effects of fluid density and viscosity variability on macrodispersion in heterogeneous porous media
,”
Water Resour. Res.
27
,
2061
(
1991
).
22.
A. Jefferey, Handbook of Mathematical Formulas and Intergrals (Academic, New York, 2001).
23.
P.
Kechagia
and
Y. C.
Yortsos
, “
Nonlocal Kardar–Parisi–Zhang equation to model interface growth
,”
Phys. Rev. E
64
,
016315
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.