Recently, based on a linear stability analysis we demonstrated the existence of a new thermoelastic mode of instability in the viscoelastic Taylor–Couette flow [Al-Mubaiyedh et al., Phys. Fluids 11, 3217 (1999); J. Rheol. 44, 1121 (2000)]. In this work, we use direct time-dependent simulations to examine the nonlinear evolution of finite amplitude disturbances arising as a result of this new mode of instability in the postcritical regime of purely elastic (i.e., Re=0), nonisothermal Taylor–Couette flow. Based on these simulations, it is shown that over a wide range of parameter space that includes the experimental conditions of White and Muller [Phys. Rev. Lett. 84, 5130 (2000)], the primary bifurcation is supercritical and leads to a stationary and axisymmetric toroidal flow pattern. Moreover, the onset time associated with the evolution of finite amplitude disturbances to the final state is comparable to the thermal diffusion time. These simulations are consistent with the experimental findings.

1.
U. A.
Al-Mubaiyedh
,
R.
Sureshkumar
, and
B.
Khomami
, “
Influence of energetics on the stability of Taylor–Couette Flow
,”
Phys. Fluids
11
,
3217
(
1999
).
2.
U. A.
Al-Mubaiyedh
,
R.
Sureshkumar
, and
B.
Khomami
, “
Linear stability of viscoelastic Taylor–Couette flow: influence of fluid rheology and energetics
,”
J. Rheol.
44
,
1121
(
2000
).
3.
J. M.
White
and
S. J.
Muller
, “
Viscous heating and the stability of Newtonian and viscoelastic Taylor–Couette flows
,”
Phys. Rev. Lett.
84
,
5130
(
2000
).
4.
R. G.
Larson
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
(
1992
).
5.
E. S. G.
Shaqfeh
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
(
1996
).
6.
M.
Avgousti
and
A. N.
Beris
, “
Non-axisymmetric modes in the viscoelastic Taylor–Couette flow
,”
J. Non-Newtonian Fluid Mech.
50
,
225
(
1993
).
7.
R.
Sureshkumar
,
A. N.
Beris
, and
M.
Avgousti
, “
Non-axisymmetric subcritical bifurcation in viscoelastic Taylor–Couette flow
,”
Proc. R. Soc. London, Ser. A
447
,
135
(
1994
).
8.
M.
Renardy
,
Y.
Renardy
,
R.
Sureshkumar
, and
A. N.
Beris
, “
Hopf–Hopf and steady Hopf mode interactions in Taylor–Couette flow of an upper convected Maxwell liquid
,”
J. Non-Newtonian Fluid Mech.
63
,
1
(
1996
).
9.
S. J.
Muller
,
R. G.
Larson
, and
E. S. G.
Shaqfeh
, “
A purely elastic transition in Taylor–Couette flow
,”
Rheol. Acta
28
,
499
(
1989
).
10.
S. J.
Muller
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
, “
Experimental studies of the onset of oscillatory instability in viscoelastic Taylor–Couette flow
,”
J. Non-Newtonian Fluid Mech.
46
,
315
(
1993
).
11.
R. G.
Larson
,
E. S. G.
Shaqfeh
, and
S. J.
Muller
, “
A purely elastic instability in Taylor–Couette flow
,”
J. Fluid Mech.
218
,
573
(
1990
).
12.
E. S. G.
Shaqfeh
,
S. J.
Muller
, and
R. G.
Larson
, “
The effects of gap width and dilute solution properties in viscoelastic Taylor–Couette instability
,”
J. Fluid Mech.
235
,
285
(
1992
).
13.
Y. L.
Joo
and
E. S. G.
Shaqfeh
, “
Observations of purely elastic instabilities in the Taylor–Dean flow of a Boger fluid
,”
J. Fluid Mech.
262
,
27
(
1994
).
14.
A.
Groisman
and
V.
Steinberg
, “
Couette–Taylor flow in a dilute polymer solution
,”
Phys. Rev. Lett.
77
,
1480
(
1996
).
15.
B. M.
Baumert
and
S. J.
Muller
, “
Flow visualization of the elastic Taylor–Couette instability in Boger fluids
,”
Rheol. Acta
34
,
147
(
1995
).
16.
B. M.
Baumert
and
S. J.
Muller
, “
Flow regimes in model viscoelastic fluid in a circular Couette system with independently rotating cylinders
,”
Phys. Fluids
9
,
566
(
1997
).
17.
L. M.
Quinzani
,
G. H.
McKinley
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Modeling the rheology of polyisobutylene solutions
,”
J. Rheol.
34
,
705
(
1990
).
18.
R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987), Vol. 2.
19.
J. P.
Rothstien
and
G. H.
McKinley
, “
Non-isothermal modification of purely elastic flow instabilities in torsional flows of polymeric fluids
,”
Phys. Fluids
13
,
382
(
2001
).
20.
D. O. Olagunju, L. P. Cook, and G. Mckinley, “Effect of viscous heating on stability of viscoelastic cone-and-plate flow: Axisymmetric case” (unpublished).
21.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer New York, 1988).
22.
J. M. White and S. J. Muller (private communication).
This content is only available via PDF.
You do not currently have access to this content.