A steady flow of a very dilute suspension of solid particles in the turbulent flow near the wall is considered. The particle phase is described by the system of mean field mass, momentum, and turbulent Reynolds stress conservation equations incorporating the closure approximation for the third-order correlation of particle fluctuating velocity; this closure approximation, as well as the mean field equations, were derived earlier from the PDF (probability density function) kinetic equation governing the particle transport in the turbulent flow. In the turbulent flow near the wall, particles can be characterized as “high inertia” or “low inertia” by small or large values, respectively, of a single nondimensional parameter: the normalized particle relaxation time combining the wall friction velocity and physical parameters of the fluid and particle phase. Making use of the technique of matching asymptotic expansions, the distributions are found of the normal and shear turbulent stress, volume fraction, and mean velocity in the particle phase of the suspension of high inertia particles.

1.
J. W.
Cleaver
and
B.
Yates
, “
A sublayer model for the deposition of particles from a turbulent flow
,”
Chem. Eng. Sci.
30
,
983
(
1975
).
2.
M. A.
Rizk
and
S. E.
Elghobashi
, “
The motion of a spherical particle suspended in a turbulent flow near a plane wall
,”
Phys. Fluids
28
,
806
(
1985
).
3.
G. A.
Kallio
and
M. W.
Reeks
, “
A numerical simulation of particle deposition in turbulent boundary layers
,”
Int. J. Multiphase Flow
15
,
443
(
1989
).
4.
Y. L.
Wu
,
C. I.
Davidson
, and
A. G.
Russel
, “
A stochastic model for particle deposition and bounceoff
,”
Aerosol. Sci. Technol.
17
,
23
(
1992
).
5.
F. G.
Fan
and
G.
Ahmadi
, “
Analysis of particle motion in the near-wall shear-layer vortices—application to the turbulent deposition process
,”
J. Colloid Interface Sci.
172
,
263
(
1995
).
6.
J.
Vyhnalikova
,
D.
Huilier
, and
H.
Burnage
, “
Numerical simulation of heavy-particle deposition in a turbulent boundary layer
,”
C. R. Acad. Sci., Ser. IIb: Mech., Phys., Chim., Astron.
326
,
103
(
1998
).
7.
J.
Lataste
,
D.
Huilier
,
H.
Burnage
, and
J.
Bednář
, “
On the shear lift force acting on heavy particles in a turbulent boundary layer
,”
Atmos. Environ.
34
,
3963
(
2000
).
8.
M. W.
Reeks
, “
On a kinetic equation for the transport of particles in turbulent flows
,”
Phys. Fluids A
3
,
446
(
1991
).
9.
M. W.
Reeks
, “
On the continuum equations for dispersed particles in nonuniform flows
,”
Phys. Fluids A
4
,
1290
(
1992
).
10.
D. C.
Swailes
and
K. F. F.
Darbyshire
, “
A generalized Fokker–Planck equation for particle transport in random media
,”
Physica A
242
,
38
(
1997
).
11.
K. E.
Hyland
,
S.
McKee
, and
M. W.
Reeks
, “
Derivation of a pdf kinetic equation for the transport of particles in turbulent flows
,”
J. Phys. A
32
,
6169
(
1999
).
12.
D. C.
Swailes
and
M. W.
Reeks
, “
Particle deposition from a turbulent flow. I. A steady-state model for high inertia particles
,”
Phys. Fluids
6
,
3392
(
1994
).
13.
B. J.
Devenish
,
D. C.
Swailes
,
Y. A.
Sergeev
, and
V. N.
Kurdyumov
, “
A PDF model for dispersed particles with inelastic particle–wall collisions
,”
Physica A
11
,
1858
(
1999
).
14.
D. C.
Swailes
,
Y. A.
Sergeev
, and
A.
Parker
, “
Chapman–Enskog closure approximation in the kinetic theory of dilute turbulent gas–particulate suspensions
,”
Physica A
254
,
517
(
1998
).
15.
D. C.
Swailes
and
K. F. F.
Darbyshire
, “
Probabilistic models for particle and scalar transport in fluctuating flows: an evaluation of simple closure approximations
,”
Physica A
262
,
307
(
1999
).
16.
P. G.
Saffman
, “
The lift on a small sphere in a slow shear flow
,”
J. Fluid Mech.
22
,
385
(
1965
).
17.
P. G.
Saffman
, Corrigendum to “
The lift on a small sphere in a slow shear flow
,”
J. Fluid Mech.
31
,
624
(
1968
).
18.
Y. A.
Sergeev
and
D. C.
Swailes
, “
Predictive model of the turbulent flow of dilute gas–particulate suspension in a vertical pipe
,”
J. Rheol.
44
,
499
(
2000
).
19.
J.
He
and
O.
Simonin
, “
Non-equilibrium prediction of the particle-phase stress tensor in vertical pneumatic conveying
,”
Proc. ASME FED
166
,
253
(
1993
).
20.
D. R.
Chapman
and
G. D.
Kuhn
, “
The limiting behavior of turbulence near the wall
,”
J. Fluid Mech.
170
,
265
(
1986
).
21.
J. M.
Wallace
,
H.
Eckelmann
, and
R. S.
Brodkey
, “
The wall region in turbulent shear flow
,”
J. Fluid Mech.
54
,
39
(
1972
).
22.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
(
1987
).
23.
P. R.
Spalart
, “
Direct simulation of a turbulent boundary layer up to Rθ=1410,
J. Fluid Mech.
187
,
61
(
1988
).
24.
Yu. A. Buyevich (private communication, 1998).
25.
J. O. Hinze, Turbulence, 2nd ed. (McGraw-Hill, New York, 1975).
26.
Y.
Sato
and
K.
Yamamoto
, “
Lagrangian measurement of fluid–particle motion in an isotropic turbulent field
,”
J. Fluid Mech.
175
,
183
(
1987
).
27.
J. R. Ferguson, Ph.D. dissertation, Washington State University, Pullman, 1986.
28.
R. S.
Brodkey
,
J. M.
Wallace
, and
H.
Eckelmann
, “
Some properties of truncated turbulence signals in bounded shear flows
,”
J. Fluid Mech.
63
,
209
(
1974
).
29.
T. S.
Luchik
and
W. G.
Tiederman
, “
Timescale and structure of ejections and bursts in turbulent channel flows
,”
J. Fluid Mech.
174
,
529
(
1987
).
30.
J. Laufer, “The structure of turbulence in fully developed pipe flow,” NASA Report 1174, 1954, pp. 1–18.
31.
B. E. Launder, “An introduction to single-point closure methodology,” in Simulation and Modeling of Turbulent Flows, edited by T. B. Gatski, M. Y. Hussaini, and J. L. Lumley (Oxford University Press, New York, 1996), p. 243.
32.
E. Y.
Harper
and
I.-D.
Chang
, “
Maximum dissipation resulting from lift in a slow viscous shear flow
,”
J. Fluid Mech.
33
,
209
(
1968
).
33.
A. J.
Hogg
, “
The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows
,”
J. Fluid Mech.
272
,
285
(
1994
).
34.
D. C.
Swailes
,
K. F. F.
Darbyshire
, and
M. W.
Reeks
, “
Analysis of particle dispersion using a PDF equation: Results for simple shear and rotating flows
,”
Proc. ASME FED
228
,
257
(
1995
).
35.
A.
Tanière
,
B.
Oesterlé
, and
P.
Boulet
, “
On the behavior of solid particles in a horizontal boundary layer with turbulence and saltation effects
,”
Exp. Fluids
23
,
463
(
1997
).
36.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
37.
T.
Tanaka
and
Y.
Tsuji
, “
Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of inter-particle collision
,”
Proc. ASME FED
121
,
123
(
1991
).
38.
C. B.
Rogers
and
J. K.
Eaton
, “
The behavior of solid particles in a vertical turbulent boundary layer in air
,”
Int. J. Multiphase Flow
16
,
819
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.