“Hot channels” (HC), formed by a rapid energy release in a gas, exhibit turbulent mixing and cooling, and their life time can be several orders of magnitude shorter than the molecular heat conduction time scale. Picone and Boris (1983) suggested that turbulent mixing results from the vorticity generation by the baroclinic mechanism during the early, shock-wave dominated stage of the dynamics. More recently, alternative scenarios of vorticity generation in the HCs were suggested. This work investigates the vorticity generation and turbulent cooling of the HCs by hydrodynamical simulations in two dimensions. Assuming small perturbations of the cylindrical shape of the energy release region, we follow the evolution of several HCs and determine their cooling time. We identify the details of vorticity generation which results in turbulent flow and fast mixing of the cold ambient gas into the HC. The simulations support, with some modifications, the Picone–Boris scenario. The simulated cooling time scale is in good agreement with experimental results, and the cooling process can be described as turbulent diffusion. The width of the mixed region shows dynamic scaling and compares well to experimental data.

1.
Y. B. Zeldovich and Y. P. Raizer, The Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1967).
2.
V. P. Korobeinikov, Problems in the Theory of Point Explosion in Gases (AMS, Providence, RI, 1976).
3.
R. D.
Hill
,
R. G.
Rinker
, and
H. D.
Wilson
, “
Atmospheric nitrogen fixation by lightning
,”
J. Atmos. Sci.
37
,
179
(
1980
).
4.
J. M.
Picone
,
J. P.
Boris
,
M.
Rayleigh
, and
R. F.
Fernsler
, “
Convective cooling of lightning channels
,”
J. Atmos. Sci.
38
,
2056
(
1981
).
5.
J. R.
Greig
,
R. E.
Pechacek
, and
M.
Raleigh
, “
Channel cooling by turbulent convective mixing
,”
Phys. Fluids
28
,
2357
(
1985
).
6.
H.
Sobral
,
M.
Villagran-Muniz
,
R.
Navarro-Gonzalez
, and
A. C.
Raga
, “
Temporal evolution of the shock wave and hot core air in laser induced plasma
,”
Appl. Phys. Lett.
77
,
3158
(
2000
).
7.
D.
Kaganovich
,
B.
Meerson
,
A.
Zigler
,
C.
Cohen
, and
J.
Levin
, “
On the cooling of the plasma fire ball produced by a laser spark in front of liquids and solids
,”
Phys. Plasmas
3
,
631
(
1996
).
8.
V.
Svetsov
,
M.
Popova
,
V.
Rybakov
,
V.
Artemiev
, and
S.
Medveduk
, “
Jet and vortex flow induced by anisotropic blast wave: experimental and computational study
,”
Shock Waves
7
,
325
(
1997
).
9.
D. G.
Korycansky
,
K. J.
Zahnle
, and
M. M.
Mac Law
, “
High resolution calculations of asteroid impacts into the venusian atmosphere
,”
Icarus
146
,
387
(
2000
).
10.
E. Muller and H. Janka, “Multidimensional hydrodynamical simulations of supernova explosions,” Max-Planck Institute for Physics and Astrophysics, MPA 573, March 1991;
H. T.
Janka
and
E.
Muller
, “
Neutrino heating, convection, and the mechanism of Type-II supernova explosions
,”
Astron. Astrophys.
306
,
167
(
1996
).
11.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1987).
12.
J. M.
Picone
and
J. P.
Boris
, “
Vorticity generation by asymmetric energy deposition in a gaseous medium
,”
Phys. Fluids
26
,
365
(
1983
).
13.
R. D.
Hill
, “
Spark channel stability
,”
Phys. Fluids B
3
,
1787
(
1991
).
14.
A.
Glasner
,
E.
Livne
, and
B.
Meerson
, “
Vorticity generation in slow cooling flows
,”
Phys. Rev. Lett.
78
,
2112
(
1997
).
15.
B.
Meerson
, “
On the dynamics of strong temperature disturbances in the upper atmosphere of the Earth
,”
Phys. Fluids A
1
,
887
(
1989
).
16.
E.
Livne
, “
An implicit method for two dimensional hydrodynamics
,”
Astrophys. J.
412
,
634
(
1993
).
17.
R. L.
Holmes
,
G.
Dimonte
,
B.
Fryxell
,
M. L.
Gittings
,
J. W.
Grove
,
M.
Schneider
,
D. H.
Sharp
,
A. L.
Velikovich
,
R. P.
Weaver
, and
Q.
Zhang
, “
Richtmyer–Meshkov instability growth: Experiment, simulation and theory
,”
J. Fluid Mech.
389
,
55
(
1999
).
18.
Case B in Ref. 5.
19.
M. N.
Plooster
, “
Shock waves from line sources. Numerical solutions and experimental measurements
,”
Phys. Fluids
13
,
2665
(
1970
).
20.
W. D.
Hayes
, “
The vorticity jump across a gasdynamic discontinuity
,”
J. Fluid Mech.
2
,
595
(
1957
)
21.
N. K.-R.
Kevlahan
, “
The vorticity jump across a shock in a non-uniform flow
,”
J. Fluid Mech.
341
,
371
(
1997
)
22.
R.
Bandiera
, “
Convective supernovae
,”
Astron. Astrophys.
139
,
368
(
1984
).
23.
U. Frisch, Turbulence. The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1996).
24.
B.
Meerson
,
P. V.
Sasorov
, and
K.
Sekimoto
, “
Logarithmically slow expansion of hot bubbles in gases
,”
Phys. Rev. E
61
,
1403
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.