A dynamic model based on the Germano identity is proposed to evaluate the subgrid-scale energy in large-eddy simulations as a function of the large-scale velocity field only. The model is shown to allow the satisfactory reconstruction of the total energy contained in a direct numerical simulation from large-eddy simulations with different resolutions. The predicted subgrid-scale energy is given as a simple algebraic expression based on the Leonard tensor appearing in the dynamic procedure and does not require an additional transport equation. The model assumes a Kolmogorov spectrum and is implemented with and without the introduction of a dissipation cutoff in the high wave vector range.

1.
G.
Erlebacher
,
M. Y.
Hussaini
,
C. G.
Speziale
, and
T. A.
Zang
, “
Toward the large-eddy simulation of compressible turbulent flows
,”
J. Fluid Mech.
238
,
155
(
1992
).
2.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
,
2746
(
1991
).
3.
C. G.
Speziale
,
G.
Erlebacher
,
T. A.
Zang
, and
M. Y.
Hussaini
, “
The subgrid-scale modeling of compressible turbulence
,”
Phys. Fluids
31
,
940
(
1988
).
4.
A.
Yoshizawa
, “
Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling
,”
Phys. Fluids
29
,
2152
(
1986
).
5.
T. A.
Zang
,
R. B.
Dahlburg
, and
J. P.
Dahlburg
, “
Direct and large-eddy simulations of three-dimensional compressible Navier–Stokes turbulence
,”
Phys. Fluids A
4
,
127
(
1992
).
6.
P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, Verlag, Berlin, 2001).
7.
G. S.
Winckelmans
,
H.
Jeanmart
, and
D.
Carati
, “
On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation
,”
Phys. Fluids
14
,
1809
(
2002
).
8.
A.
Misra
and
D. I.
Pullin
, “
A vortex-based subgrid scale stress model for large-eddy simulation
,”
Phys. Fluids
9
,
2443
(
1997
).
9.
T.
Voelkl
,
D. I.
Pullin
, and
D. C.
Chan
, “
A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation
,”
Phys. Fluids
12
,
1810
(
2000
).
10.
O. Debliquy, B. Knaepen, and D. Carati, “A dynamic subgrid-scale model based on the turbulent kinetic energy,” in Direct and Large-Eddy Simulation Workshop 4, University of Twente, edited by B. J. Geurts, R. Friedrich, and O. Metais (Enschede, The Netherlands, 2001), pp. 58–61.
11.
S. Ghosal, T. S. Lund, and P. Moin, “A local dynamic model for large eddy simulation,” in Annual Research Briefs—1992, Center for Turbulence Research, edited by P. Moin, W. C. Reynolds, and J. Kim (Stanford University and NASA Ames Research Center, Stanford, 1993), pp. 3–25.
12.
C. G.
Speziale
, “
Analytical methods for the development of Reynolds-stress closures in turbulence
,”
Annu. Rev. Fluid Mech.
23
,
105
(
1991
).
13.
V. C.
Wong
, “
A proposed statistical-dynamic closure method for the linear or nonlinear subgrid-scale stresses
,”
Phys. Fluids A
4
,
1080
(
1992
).
14.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy-viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
15.
A.
Cook
, “
Determination of the constant coefficient in scale similarity models of turbulence
,”
Phys. Fluids
9
,
1485
(
1997
).
16.
G.
Comte-Bellot
and
S.
Corrsin
, “
Simple Eulerian time correlations of full- and narrow-band velocity signals in grid generated ‘isotropic’ turbulence
,”
J. Fluid Mech.
48
,
273
(
1971
).
17.
R. S. Rogallo, “Numerical experiments in homogeneous turbulence,” NASA Technical Memorandum 81315, NASA, Ames Research Center, 1981.
18.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations: 1. The basic experiment
,”
Mon. Weather Rev.
91
,
99
(
1963
).
19.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids A
4
,
633
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.