Transient growth due to non-normality is investigated for the Taylor–Couette problem with counter-rotating cylinders as a function of aspect ratio η and Reynolds number Re. For all Re⩽500, transient growth is enhanced by curvature, i.e., is greater for η<1 than for η=1, the plane Couette limit. For fixed Re<130 it is found that the greatest transient growth is achieved for η between the Taylor–Couette linear stability boundary, if it exists, and one, while for Re>130 the greatest transient growth is achieved for η on the linear stability boundary. Transient growth is shown to be approximately 20% higher near the linear stability boundary at Re=310,η=0.986 than at Re=310,η=1, near the threshold observed for transition in plane Couette flow. The energy in the optimal inputs is primarily meridional; that in the optimal outputs is primarily azimuthal. Pseudospectra are calculated for two contrasting cases. For large curvature, η=0.5, the pseudospectra adhere more closely to the spectrum than in a narrow gap case, η=0.99.

1.
G. I.
Taylor
, “
Stability of a viscous fluid contained between two rotating cylinders
,”
Philos. Trans. R. Soc. London, Ser. A
223
,
289
(
1923
).
2.
D.
Coles
, “
Transition in circular Couette flow
,”
J. Fluid Mech.
21
,
385
(
1965
).
3.
C. D.
Andereck
,
S. S.
Liu
, and
H. L.
Swinney
, “
Flow regimes in a circular Couette system with independently rotating cylinders
,”
J. Fluid Mech.
164
,
155
(
1986
).
4.
R.
Tagg
,
W. S.
Edwards
,
H. L.
Swinney
, and
P. S.
Marcus
, “
Nonlinear standing waves in Couette–Taylor flow
,”
Phys. Rev. A
39
,
3734
(
1989
).
5.
E. R.
Krueger
,
A.
Gross
, and
R. C.
DiPrima
, “
On the relative importance of Taylor-vortex and nonaxisymmetric modes in flow between rotating cylinders
,”
J. Fluid Mech.
24
,
521
(
1966
).
6.
P. S.
Marcus
, “
Simulation of Taylor–Couette flow. II. Numerical results for wavy-vortex flow with one traveling wave
,”
J. Fluid Mech.
146
,
65
(
1984
).
7.
W. F.
Langford
,
R.
Tagg
,
E. J.
Kostelich
,
H. L.
Swinney
, and
M.
Golubitsky
, “
Primary instabilities and bicriticality in flow between counter-rotating cylinders
,”
Phys. Fluids
31
,
776
(
1988
).
8.
R. C. DiPrima and H. L. Swinney, “Instabilities and transition in flow between concentric rotating cylinders,” in Hydrodynamic Instabilities and the Transition to Turbulence, edited by H. L. Swinney and J. P. Gollub (Springer-Verlag, New York, 1981).
9.
P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, U.K., 1981).
10.
R.
Tagg
, “
The Couette–Taylor problem
,”
Nonlinear Sci. Today
4
,
1
(
1994
).
11.
P. Chossat and G. Iooss, The Couette–Taylor Problem (Springer-Verlag, New York, 1994).
12.
H. B.
Squire
, “
On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls
,”
Proc. R. Soc. London, Ser. A
142
,
621
(
1933
).
13.
V. A.
Romanov
, “
Stability of plane-parallel Couette flow
,”
Funkcional Anal. i Prolozen
7
,
62
(
1973
) translated in
V. A.
Romanov
,
Funct. Anal. Appl.
7
,
137
(
1973
).
14.
N.
Tillmark
and
P. H.
Alfredsson
, “
Experiments on transition in plane Couette flow
,”
J. Fluid Mech.
235
,
89
(
1991
).
15.
A.
Lundbladh
and
A. V.
Johansson
, “
Direct simulation of turbulent spots in plane Couette flow
,”
J. Fluid Mech.
229
,
499
(
1991
).
16.
D. D.
Joseph
, “
Nonlinear stability of the Boussinesq equations by the method of energy
,”
Arch. Ration. Mech. Anal.
22
,
163
(
1966
).
17.
K. M.
Butler
and
B. F.
Farrell
, “
Three-dimensional optimal perturbations in viscous shear flow
,”
Phys. Fluids A
4
,
1637
(
1992
).
18.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
,
578
(
1993
).
19.
S. C.
Reddy
and
D. S.
Henningson
, “
Energy growth in viscous channel flows
,”
J. Fluid Mech.
252
,
209
(
1993
).
20.
F.
Waleffe
, “
Transition in shear flows. Nonlinear normality versus non-normal linearity
,”
Phys. Fluids
7
,
3060
(
1995
).
21.
T.
Gebhardt
and
S.
Grossmann
, “
The Taylor–Couette eigenvalue problem with independently rotating cylinders
,”
Z. Phys. B: Condens. Matter
90
,
475
(
1993
).
22.
A.
Meseguer
, “
Energy transient growth in the Taylor–Couette problem
,”
Phys. Fluids
14
,
1655
(
2002
).
23.
M.
Nagata
, “
Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity
,”
J. Fluid Mech.
217
,
519
(
1990
).
24.
M.
Nagata
, “
Tertiary solutions and their stability in rotating plane Couette flow
,”
J. Fluid Mech.
358
,
357
(
1998
).
25.
H.
Faisst
and
B.
Eckhardt
, “
Transition from the Couette–Taylor system to the plane Couette system
,”
Phys. Rev. E
61
,
7227
(
2000
).
26.
A.
Prigent
,
G.
Grégoire
,
H.
Chaté
,
O.
Dauchot
, and
W.
van Saarloos
, “
Large-scale finite-wavelength modulation within turbulent shear flows
,”
Phys. Rev. Lett.
89
,
014501
(
2002
).
27.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer-Verlag, Berlin, 1988).
28.
S. C.
Reddy
,
P. J.
Schmid
, and
D. S.
Henningson
, “
Pseudospectra of the Orr–Sommerfeld operator
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
53
,
15
(
1993
).
29.
P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer-Verlag, New York, 2001).
30.
L. N.
Trefethen
, “
Computation of pseudospectra
,”
Acta Numerica
8
,
247
(
1999
).
31.
T. G.
Wright
and
L. N.
Trefethen
, “
Large-scale computation of pseudospectra using ARPACK and Eigs
,”
SIAM J. Sci. Comput. (USA)
23
,
591
(
2001
).
32.
M. T.
Landahl
, “
A note on an algebraic instability of inviscid parallel shear flows
,”
J. Fluid Mech.
98
,
243
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.