We present the effects of thermal radiation upon the classical self-similar solution of the collapse of cylindrical shock waves in inviscid, ideal gas with a constant ratio of specific heats. The gas is considered to be optically thick and the shock front to be opaque. The ambient gas ahead of the shock front is assumed to be uniform and at rest and its counterpressure concerning the motion of the shock front is neglected. In order to investigate the deviation from the classical adiabatic solution caused only by a small amount of radiation, the shock front in the nonadiabatic case fulfills the same conditions as the shock front in the adiabatic case, except for the fact that in the nonadiabatic case heat is released at the shock front. For different adiabatic exponents self-similar solutions have been obtained determining the eigenvalues and the profiles of the flow variables. The influence of radiation is shown through variation of the mean free path of radiation.

1.
K. C.
Wang
, “
The ‘piston problem’ with thermal radiation
,”
J. Fluid Mech.
20
,
447
(
1964
).
2.
J. B.
Helliwell
, “
Self-similar piston problems with radiative heat transfer
,”
J. Fluid Mech.
37
,
497
(
1969
).
3.
L. A.
Elliott
, “
Similarity methods in radiation hydrodynamics
,”
Proc. R. Soc. London, Ser. A
258
,
287
(
1960
).
4.
A. F.
Ghoniem
,
M. M.
Kamel
,
S. A.
Berger
, and
A. K.
Oppenheim
, “
Effects of internal heat transfer on the structure of self-similar blast waves
,”
J. Fluid Mech.
117
,
473
(
1982
).
5.
G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics (Consultants Bureau, New York, 1979).
6.
Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena II (Academic, New York, 1967).
7.
G.
Guderley
, “
Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse
,”
Luftfahrtforschung
19
,
302
(
1942
).
8.
D. Butler, “Converging spherical and cylindrical shocks,” Armament Res. Estab. Rep. 54/54, 1954.
9.
L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1959).
10.
R. L.
Welsh
, “
Imploding shocks and detonations
,”
J. Fluid Mech.
29
,
61
(
1967
).
11.
R. B.
Lazarus
, “
Self-similar solutions for converging shocks and collapsing cavities
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
18
,
316
(
1981
).
12.
M.
Van Dyke
and
A. J.
Guttmann
, “
The converging shock wave from a spherical or cylindrical piston
,”
J. Fluid Mech.
120
,
451
(
1982
).
13.
J. R.
NiCastro
, “
Similarity analysis of radiative gasdynamics with spherical symmetry
,”
Phys. Fluids
13
,
2000
(
1970
).
14.
V. D.
Sharma
and
C.
Rhada
, “
Strong converging shock waves in a radiating gas
,”
Z. Angew. Math. Mech.
75/11
,
847
(
1995
).
15.
V. P. Korobeinikov, Problems in the Theory of Point Explosion in Gases (American Mathematical Society, Providence, RI, 1976).
16.
D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics (Oxford University Press, Oxford, 1984).
17.
W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas Dynamics (Wiley, New York, 1967).
18.
G. C. Pomraning, The Equations of Radiation Hydrodynamics, Int. Ser. Monographs in Natural Philosophy 54 (Pergamon, New York, 1973).
19.
A. K.
Oppenheim
,
A. L.
Kuhl
,
E. A.
Lundstrom
, and
M. M.
Kamel
, “
A parametric study of self-similar blast waves
,”
J. Fluid Mech.
52
,
657
(
1972
).
20.
A. K.
Oppenheim
,
E. A.
Lundstrom
,
A. L.
Kuhl
, and
M. M.
Kamel
, “
A systematic exposition of the conservation equations for blast waves
,”
J. Appl. Mech.
38
,
783
(
1971
).
21.
A. K.
Oppenheim
,
A. L.
Kuhl
, and
M. M.
Kamel
, “
On self-similar blast waves headed by the Chapman–Jouguet detonation
,”
J. Fluid Mech.
55
,
257
(
1972
).
22.
G. I.
Barenblatt
,
R. H.
Guirguis
,
M. M.
Kamel
,
A. L.
Kuhl
,
A. K.
Oppenheim
, and
Ya. B.
Zel’dovich
, “
Self-similar explosion waves of variable energy at the front
,”
J. Fluid Mech.
99
,
841
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.