Optimal control theory is used to determine the wall transpiration (unsteady blowing/suction) with zero net mass flux capable of attenuating Tollmien–Schlichting waves in a spatially developing boundary layer. The flow state is determined from the parabolized stability equations, in a linear setting. An appropriate cost functional is introduced and minimized iteratively by the numerical solution of the equations for the state and the dual state, coupled via transfer and optimality conditions. Central to the control is the determination of the wall Green’s function expressing the receptivity of the flow to wall inhomogeneities. The optimal wall velocity is obtained in few iterations and a reduction of several orders of magnitude in output disturbance energy is demonstrated, as compared to the uncontrolled case, for control laws operating both over the whole wall length and over a finite strip. Finally, white noise disturbances are applied to the optimal wall velocities already determined, to assess the influence of an imperfectly operating controller on the final result, and to decide on the practical feasibility of the approach.

1.
R. Joslin, “Overview of laminar flow control,” Technical Report No. NASA/TP-1998-208705, NASA (1998).
2.
R.
Joslin
, “
Aircraft laminar flow control
,”
Annu. Rev. Fluid Mech.
30
,
1
(
1998
).
3.
M. Gunzburger, “Adjoint equation-based methods for control problems in incompressible, viscous flows,” Flow, Turbul. Combust. (in press).
4.
R. W.
Milling
, “
Tollmien–Schlichting wave cancellation
,”
Phys. Fluids
24
,
979
(
1981
).
5.
G. B. H. W.
Liepmann
and
D.
Nosenchuck
, “
Control of laminar-instability waves using a new technique
,”
J. Fluid Mech.
118
,
187
(
1982
).
6.
P. J. Strykowski and K. R. Sreenivasan, “The control of transitional flows,” AIAA Paper 85-0559 (1985).
7.
L. Maestrello, “Active transition fixing and control of the boundary layer in air,” AIAA Paper 85-0564 (1985).
8.
D. M.
Ladd
and
E. W.
Hendricks
, “
Active control of 2-D instability waves on an axisymmetric body
,”
Exp. Fluids
6
,
69
(
1988
).
9.
A.
Thomas
, “
The control of boundary-layer transition using a wave superposition principle
,”
J. Fluid Mech.
137
,
233
(
1983
).
10.
V. M.
Gilev
and
V. V.
Kozlov
, “
Use of small localized wall vibrations for control of transition in the boundary layer
,”
Fluid Mech.-Sov. Res.
14
,
50
(
1985
).
11.
V. M.
Gilev
and
V. V.
Kozlov
, “
Effect of altering injection and suction on transition in the boundary layer
,”
Fluid Mech.-Sov. Res.
16
,
61
(
1987
).
12.
C. J.
Gedney
, “
The cancellation of a sound-excited Tollmien–Schlichting wave with plate vibration
,”
Phys. Fluids
26
,
1158
(
1983
).
13.
V. V. Kozlov and V. Y. Levchenko, “Laminar-turbulent transition control by localized disturbances,” AIAA Paper 85-0568 (1985).
14.
R.
Joslin
,
R.
Nicolaides
,
F.
Erlebacher
,
M.
Hussaini
, and
M.
Gunzburger
, “
Active control of instabilities in laminar boundary layer flow. Part II: Use of sensors and spectral controller
,”
AIAA J.
33
,
1521
(
1995
).
15.
R.
Joslin
,
F.
Erlebacher
, and
M.
Hussaini
, “
Active control of instabilities in laminar boundary layer flow. Overview and concept validation
,”
J. Fluids Eng.
118
,
494
(
1996
).
16.
R.
Joslin
,
M.
Gunzburger
,
R.
Nicolaides
,
F.
Erlebacher
, and
M.
Hussaini
, “
A methodology for the automated optimal control of flows including transitional flows
,”
AIAA J.
35
,
816
(
1997
).
17.
T.
Bewley
and
S.
Liu
, “
Optimal and robust control and estimation of linear paths to transition
,”
J. Fluid Mech.
365
,
305
(
1998
).
18.
P.
Cathalifaud
and
P.
Luchini
, “
Algebraic growth in a boundary layer: optimal control by blowing and suction at the wall
,”
Eur. J. Mech. B/Fluids
19
,
469
(
2000
).
19.
P. Corbett, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2000.
20.
F.
Bertolotti
,
T.
Herbert
, and
P.
Spalart
, “
Linear and nonlinear stability of the Blasius boundary layer
,”
J. Fluid Mech.
242
,
441
(
1992
).
21.
T.
Herbert
, “
Parabolized stability equations
,”
Annu. Rev. Fluid Mech.
29
,
245
(
1997
).
22.
C.
Airiau
and
G.
Casalis
, “
Boundary layer linear stability using a system of parabolic equations
,”
Rech. Aerosp.
5
,
57
(
1993
).
23.
C. Airiau and G. Casalis, “Non linear PSE compared with DNS and experiment,” in IUTAM Symposium on Laminar-Turbulent Transition, Sendai, Japan, edited by R. Kobayashi (Springer, Berlin, 1994), pp. 85–92.
24.
A. Hanifi, “Local and non-local stability analysis and transition prediction of compressible boundary layer flows,” Ph.D. thesis and TRITA-MEK Technical Report 1995-12, Royal Institute of Technology, Stockholm, Sweden (1995).
25.
D.
Hill
, “
Adjoint system and their role in the receptivity problem for boundary layer
,”
J. Fluid Mech.
292
,
183
(
1995
).
26.
A.
Tumin
, “
Receptivity of pipe Poiseuille flow
,”
J. Fluid Mech.
315
,
119
(
1996
).
27.
P.
Luchini
and
A.
Bottaro
, “
Görtler vortices: A backward-in-time approach to the receptivity problem
,”
J. Fluid Mech.
363
,
1
(
1998
).
28.
C. Airiau, S. Walther, and A. Bottaro, “Non-parallel receptivity and the adjoint PSE,” in IUTAM Symposium on Laminar-Turbulent Transition, September 1999, Sedona, AZ, edited by H. Fasel and W. Saric (Springer, Berlin, 2000), pp. 57–62.
29.
S. Collis and A. Dobrinsky, “Evaluation of adjoint based methods for the prediction of the receptivity,” in IUTAM Symposium on Laminar-Turbulent Transition, September 1999, Sedona, AZ, edited by H. Fasel and W. Saric (Springer, Berlin, 2000), pp. 111–116.
30.
D. Arnal, G. Schrauf, H. Stock, G. Casalis, A. Hanifi, and S. Hein, “EUROTRANS Final Report,” Technical Report, European Community (2000).
31.
C. Airiau, Ph.D. thesis, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse, France, 1994.
32.
P.
Andersson
,
D.
Henningson
, and
A.
Hanifi
, “
On a stabilization procedure for the parabolic stability equations
,”
J. Eng. Math.
33
,
311
(
1998
).
33.
T. Herbert, “Parabolized stability equations,” AGARD REPORT (1993).
34.
C. Airiau, “Non-parallel acoustic receptivity of a Blasius boundary layer using an adjoint approach,” Flow, Turbul. Combust. (in press).
35.
D. C. Hill, “Boundary layer receptivity and control,” Center for Turbulence Research, Annual Research Briefs, Standford University, 1993.
36.
D. Hill, “Receptivity in non-parallel boundary layers,” FEDSM97-3108, ASME Fluids Engineering Division Summer Meeting, 1997.
37.
T.
Bewley
,
R.
Temam
, and
M.
Ziane
, “
A general framework for robust control in fluid mechanics
,”
Physica D
138
,
360
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.