We present results from 1283 and 2563 direct numerical simulations (DNS) of decaying compressible, isotropic turbulence at fluctuation Mach numbers of Mt∼0.1–0.5 and at Taylor Reynolds numbers Reλ=O(50–100). The presence or absence of fluctuations of thermodynamic quantities as well as velocity divergence in the initial conditions are found to have a negligible effect on the decay of turbulent kinetic energy. The decay of the turbulent kinetic energy shows no significant effect of Mt and power laws fitted to the timewise decay exhibit exponents n=1.3–1.7 that are similar to those found for decaying incompressible turbulence. The main new phenomenon produced by compressibility is the appearance of random shocklets which form during the main part of the decay. An algorithm is developed to extract and quantify the shocklet statistics from the DNS fields. A model for the probability density function (PDF) of the shocklet strength Mn−1(Mn is the normal shock Mach number) is derived based on combining weak-shock theory with a model of the PDF of longitudinal velocity differences in the turbulence. This shows reasonable agreement with PDFs obtained from the shocklet extraction algorithm. The model predicts that at moderate Mt the most probable shocklet strength is proportional to Mt/Reλ1/2 and also that the PDF for the shock thicknesses has an inverse cubic tail. The shock thickness statistics are found to scale on the Kolmogorov length rather than the mean free path in the gas.

1.
G. A. Blaisdell, N. N. Mansour, and W. C. Reynolds, “Compressibility effects on the growth and structure of homogeneous turbulent shear flow,” Report No. TF50, Stanford University, Stanford, CA, 1991.
2.
T.
Passot
and
A.
Pouquet
, “
Numerical simulation of compressible homogeneous flows in the turbulent regime
,”
J. Fluid Mech.
181
,
441
(
1987
).
3.
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Eddy shocklets in decaying compressible turbulence
,”
Phys. Fluids A
3
,
657
(
1991
).
4.
G.
Erlebacher
,
M. Y.
Hussaini
,
C. G.
Speziale
, and
T. A.
Zang
, “
Toward the large-eddy simulation of compressible turbulent flows
,”
J. Fluid Mech.
238
,
155
(
1992
).
5.
G.
Erlebacher
,
M. Y.
Hussaini
,
H. O.
Kreiss
, and
S.
Sarkar
, “
The analysis and simulation of compressible turbulence
,”
Theor. Comput. Fluid Dyn.
2
,
73
(
1990
).
6.
T. A.
Zang
,
R. B.
Dahlburg
, and
J. P.
Dahlburg
, “
Direct and large-eddy simulations of three dimensional Navier–Stokes turbulence
,”
Phys. Fluids A
4
,
127
(
1992
).
7.
S.
Kida
and
S. A.
Orszag
, “
Enstrophy budget in decaying compressible turbulence
,”
J. Sci. Comput.
5
,
1
(
1990
).
8.
S.
Kida
and
S. A.
Orszag
, “
Energy and spectral dynamics in forced compressible turbulence
,”
J. Sci. Comput.
5
,
85
(
1990
).
9.
S.
Kida
and
S. A.
Orszag
, “
Energy and spectral dynamics in decaying compressible turbulence
,”
J. Phys.: Condens. Matter
7
,
1
(
1992
).
10.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
102
,
16
(
1992
).
11.
A. Wray (private communication).
12.
J. R.
Ristorcelli
and
G. A.
Blaisdell
, “
Consistent initial conditions for the DNS of compressible turbulence
,”
Phys. Fluids
9
,
4
(
1997
).
13.
M.-J.
Huang
and
A.
Leonard
, “
Power-law decay of homogeneous turbulence at low Reynolds numbers
,”
Phys. Fluids
6
,
3765
(
1994
).
14.
Th.
von Kármán
and
L.
Howarth
, “
On the statistical theory of isotropic turbulence
,”
Proc. R. Soc. London, Ser. A
164
,
192
(
1938
).
15.
L. G. Loitsianskii, NACA Tech. Memo. No. 107, 1945.
16.
P.
Saffman
, “
The large-scale structure of homogeneous turbulence
,”
J. Fluid Mech.
27
,
581
(
1967
).
17.
S. K.
Lele
, “
Compressibility effects on turbulence
,”
Annu. Rev. Fluid Mech.
26
,
211
(
1994
).
18.
S.
Sarkar
,
G.
Erlebacher
,
M. Y.
Hussaini
, and
H. O.
Kreiss
, “
The analysis and modelling of dilatational terms in compressible turbulence
,”
J. Fluid Mech.
227
,
473
(
1991
).
19.
A.
Vincent
and
M.
Meneguzzi
, “
The spatial structure and statistical properties of homogeneous turbulence
,”
J. Fluid Mech.
225
,
1
(
1991
).
20.
B.
Castaing
,
B.
Chabaud
,
B.
Hébral
,
A.
Naert
, and
J.
Pienke
, “
Turbulence at helium temperature: Velocity measurements
,”
Physica B
194–196
,
697
(
1994
).
21.
A.
Praskovsky
and
S.
Oncley
, “
Probability density distribution of velocity differences at very high Reynolds numbers
,”
Phys. Rev. Lett.
73
,
3399
(
1994
).
22.
R. Samtaney, “Visualization, extraction and quantification of discontinuities in compressible flows,” NAS Technical Report No. 99-002, NASA Ames Research Center, March 1999.
23.
E. Angel, Interactive Computer Graphics (Addison-Wesley, New York, 1997).
24.
P. A. Thompson, Compressible-Fluid Dynamics (McGraw-Hill, New York, 1984).
25.
J. E.
Moyal
, “
The spectra of turbulence in a compressible fluid: Eddy turbulence and random noise
,”
Proc. Cambridge Philos. Soc.
48
,
329
(
1951
).
This content is only available via PDF.
You do not currently have access to this content.