We study the velocity boundary condition for curved boundaries in the lattice Boltzmann equation (LBE). We propose a LBE boundary condition for moving boundaries by combination of the “bounce-back” scheme and spatial interpolations of first or second order. The proposed boundary condition is a simple, robust, efficient, and accurate scheme. Second-order accuracy of the boundary condition is demonstrated for two cases: (1) time-dependent two-dimensional circular Couette flow and (2) two-dimensional steady flow past a periodic array of circular cylinders (flow through the porous media of cylinders). For the former case, the lattice Boltzmann solution is compared with the analytic solution of the Navier–Stokes equation. For the latter case, the lattice Boltzmann solution is compared with a finite-element solution of the Navier–Stokes equation. The lattice Boltzmann solutions for both flows agree very well with the solutions of the Navier–Stokes equations. We also analyze the torque due to the momentum transfer between the fluid and the boundary for two initial conditions: (a) impulsively started cylinder and the fluid at rest, and (b) uniformly rotating fluid and the cylinder at rest.

1.
U.
Frisch
,
B.
Hasslacher
, and
Y.
Pomeau
, “
Lattice gas automata for the Navier–Stokes equation
,”
Phys. Rev. Lett.
56
,
1505
(
1986
).
2.
U.
Frisch
,
D.
d’Humières
,
B.
Hasslacher
,
P.
Lallemand
,
Y.
Pomeau
, and
J.-P.
Rivet
, “
Lattice gas hydrodynamics in two and three dimensions
,”
Complex Syst.
1
,
649
(
1987
).
3.
G.
McNamara
and
G.
Zanetti
, “
Use of the Boltzmann equation to simulate lattice gas automata
,”
Phys. Rev. Lett.
61
,
2332
(
1988
).
4.
F. J.
Higuera
and
J.
Jiménez
, “
Boltzmann approach to lattice gas simulations
,”
Europhys. Lett.
9
,
663
(
1989
).
5.
F. J.
Higuera
,
S.
Succi
, and
R.
Benzi
, “
Lattice gas dynamics with enhanced collisions
,”
Europhys. Lett.
9
,
345
(
1989
).
6.
H.
Chen
,
S.
Chen
, and
W. H.
Matthaeus
, “
Recovery of the Navier–Stokes equations using a lattice gas Boltzmann method
,”
Phys. Rev. A
45
,
R5339
(
1992
).
7.
Y. H.
Qian
,
D.
d’Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier–Stokes equation
,”
Europhys. Lett.
17
,
479
(
1992
).
8.
R.
Benzi
,
S.
Succi
, and
M.
Vergassola
, “
The lattice Boltzmann equation: Theory and applications
,”
Phys. Rep.
222
,
145
(
1992
).
9.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
10.
X.
He
and
L.-S.
Luo
, “
Lattice Boltzmann model for the incompressible Navier–Stokes equation
,”
J. Stat. Phys.
88
,
927
(
1997
).
11.
D. d’Humières, “Generalized lattice-Boltzmann equations,” in Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics Vol. 159, edited by B. D. Shizgal and D. P. Weaver (AIAA, Washington, DC, 1992).
12.
D. P.
Zeigler
, “
Boundary conditions for the lattice Boltzmann simulations
,”
J. Stat. Phys.
71
,
1171
(
1993
).
13.
O.
Behrend
, “
Solid boundaries in particle suspension simulations via lattice Boltzmann method
,”
Phys. Rev. E
52
,
1164
(
1995
).
14.
P. A.
Skordos
, “
Initial and boundary conditions for the lattice Boltzmann method
,”
Phys. Rev. E
48
,
4823
(
1993
).
15.
D. R.
Noble
,
S.
Chen
,
J. G.
Georgiadis
, and
R. O.
Buckius
, “
A consistent hydrodynamic boundary condition for the lattice Boltzmann method
,”
Phys. Fluids
7
,
203
(
1995
).
16.
T.
Inamuro
,
M.
Yoshino
, and
F.
Ogino
, “
A nonslip boundary condition for the lattice Boltzmann simulations
,”
Phys. Fluids
7
,
2928
(
1995
).
17.
S.
Chen
,
D.
Martinez
, and
R.
Mei
, “
On boundary conditions in lattice Boltzmann method
,”
Phys. Fluids
8
,
2527
(
1996
).
18.
R.
Mei
,
L.-S.
Luo
, and
W.
Shyy
, “
An accurate curved boundary treatment in lattice Boltzmann method
,”
J. Comput. Phys.
155
,
307
(
1999
).
19.
R.
Cornubert
,
D.
d’Humières
, and
D.
Levermore
, “
A Knudsen layer theory
,”
Physica D
47
,
241
(
1991
).
20.
I.
Ginzburg
and
P.
Adler
, “
Boundary flow condition analysis for the three-dimensional lattice Boltzmann method
,”
J. Phys. II
4
,
191
(
1994
).
21.
I.
Ginzburg
and
D.
d’Humières
, “
Local second-order boundary methods for lattice Boltzmann models
,”
J. Stat. Phys.
84
,
927
(
1996
).
22.
I. V.
Karlin
,
S.
Succi
, and
S.
Orszag
, “
Lattice Boltzmann method for irregular grids
,”
Phys. Rev. Lett.
82
,
5245
(
1999
).
23.
P.
Lallemand
and
L.-S.
Luo
, “
Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance and stability
,”
Phys. Rev. E
61
,
6546
(
2000
).
24.
O.
Filippova
and
D.
Hänel
, “
Grid refinement for lattice BGK models
,”
J. Comput. Phys.
147
,
219
(
1998
).
25.
X.
He
,
Q.
Zou
,
L.-S.
Luo
, and
M.
Dembo
, “
Analytic solutions of simple flows and analysis of non slip boundary conditions for the lattice Boltzmann BGK model
,”
J. Stat. Phys.
87
,
115
(
1997
).
26.
L.-S.
Luo
, “
Analytic solutions of linearized lattice Boltzmann equation for simple flows
,”
J. Stat. Phys.
88
,
913
(
1997
).
27.
A. S.
Sangani
and
A.
Acrivos
, “
Slow flow past periodic arrays of cylinders with applications to heat transfer
,”
Int. J. Multiphase Flow
8
,
193
(
1982
). Note that the coefficient ofbnat the end of their Eq. (11) should be+(2n−1).
28.
M.
Firdaouss
,
J. L.
Guermond
, and
P. Le
Quéré
, “
Non linear corrections to Darcy’s law at low Reynolds numbers
,”
J. Fluid Mech.
343
,
331
(
1997
).
29.
D. L.
Koch
and
A. J.
Ladd
, “
Moderate Reynolds number flows through periodic and random arrays of aligned cylinders
,”
J. Fluid Mech.
349
,
31
(
1997
).
30.
Y.
Saad
and
M. H.
Schultz
, “
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
,”
SIAM J. Sci. Comp.
7
,
856
(
1986
).
31.
M.
Firdaouss
,
J. L.
Guermond
, and
D.
Lafarge
, “
Some remarks on the acoustic parameters of sharp-edged porous media
,”
Int. J. Eng. Sci.
36
,
1035
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.