A formulation of the approximate deconvolution model (ADM) for the large-eddy simulation (LES) of compressible flows in complex geometries is detailed. The model is applied to supersonic compression ramp flow where shock-turbulence interaction occurs. With the ADM approach an approximation to the unfiltered solution is obtained from the filtered solution by a series expansion involving repeated filtering. Given a sufficiently good approximation of the unfiltered solution at a time instant, the flux terms of the underlying filtered transport equations can be computed directly, avoiding the need to explicitly compute subgrid-scale closures. The effect of nonrepresented scales is modeled by a relaxation regularization involving a secondary filter operation and a dynamically estimated relaxation parameter. Results of the large-eddy simulation of the turbulent supersonic boundary layer along a compression ramp compare well with filtered DNS data. The filtered shock solution is correctly predicted by the ADM procedure, demonstrating that turbulent and nonturbulent subgrid-scales are properly modeled. We found that a computationally expensive shock-capturing technique was not necessary for stable integration. As a consequence, the computational effort for simulations with ADM is approximately as large as for a coarse-grid DNS with a hybrid compact-upwind-ENO scheme, since the additional computational cost for the subgrid-scale model is more than compensated due to the fact that in the LES flux-derivatives can be computed by linear central finite differences on the entire domain.

1.
M.
Lesieur
and
O.
Métais
, “
New trends in large-eddy simulations of turbulence
,”
Annu. Rev. Fluid Mech.
28
,
45
(
1996
).
2.
Ch.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
(
2000
).
3.
G.
Erlebacher
,
M. Y.
Hussaini
,
C. G.
Speziale
, and
T. A.
Zang
, “
Toward the large-eddy simulation of compressible turbulent flows
,”
J. Fluid Mech.
238
,
155
(
1992
).
4.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
93
,
99
(
1963
).
5.
J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows,” Technical Report No. TF-19, Department of Mechanical Engineering, Stanford University, Stanford, CA, 1983.
6.
A.
Yoshizawa
, “
Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling
,”
Phys. Fluids
29
,
2152
(
1986
).
7.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
8.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
,
2746
(
1991
).
9.
N.
El-Hady
and
T. A.
Zang
, “
Large-eddy simulation of nonlinear evolution and breakdown to turbulence in high-speed boundary layers
,”
Theor. Comput. Fluid Dyn.
7
,
217
(
1995
).
10.
Y.
Zang
,
R. L.
Street
, and
J. H.
Koseff
, “
A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows
,”
Phys. Fluids A
5
,
3186
(
1993
).
11.
B. Vreman, “Direct and large-eddy simulation of the compressible turbulent mixing layer,” Ph.D. thesis, University of Twente, 1995.
12.
X.
Normand
and
M.
Lesieur
, “
Direct and large-eddy simulations of transition in the compressible boundary layer
,”
Theor. Comput. Fluid Dyn.
3
,
231
(
1992
).
13.
F.
Ducros
,
P.
Comte
, and
M.
Lesieur
, “
Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate
,”
J. Fluid Mech.
326
,
1
(
1996
).
14.
O.
Métais
and
M.
Lesieur
, “
Spectral large-eddy simulations of isotropic and stably-stratified turbulence
,”
J. Fluid Mech.
239
,
157
(
1992
).
15.
F.
Ducros
,
V.
Ferrand
,
F.
Nicoud
,
C.
Weber
,
D.
Darracq
,
C.
Gacherieu
, and
T.
Poinsot
, “
Large-eddy simulation of the shock turbulence interaction
,”
J. Comput. Phys.
152
,
517
(
1999
).
16.
J. P. Boris, F. F. Grinstein, E. S. Oran, and R. L. Kolbe, “New insights into large eddy simulation,” in Fluid Dynamics Research (North–Holland, Amsterdam, 1992), Vol. 10, pp. 199–228.
17.
E.
Garnier
,
M.
Mossi
,
P.
Sagaut
,
P.
Comte
, and
M.
Deville
, “
On the use of shock-capturing schemes for large-eddy simulation
,”
J. Comput. Phys.
153
,
273
(
1999
).
18.
A.
Leonard
, “
Energy cascade in large eddy simulations of turbulent fluid flows
,”
Adv. Geophys.
18A
,
237
(
1974
).
19.
R. A.
Clark
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Evaluation of subgrid-scale turbulence models using an accurately simulated turbulent flow
,”
J. Fluid Mech.
91
,
1
(
1979
).
20.
K. B. Shah and J. Ferziger, “A new noneddy viscosity subgrid-scale model and its application to channel flow,” in CTR Annual Research Briefs 1995, Center for Turbulence Research, Stanford University and NASA Ames Research Center, Stanford, California, 1995.
21.
B.
Geurts
, “
Inverse modeling for large-eddy simulation
,”
Phys. Fluids
9
,
3585
(
1997
).
22.
J. A.
Domaradzki
and
E. M.
Saiki
, “
A subgrid-scale model based on the estimation of unresolved scales of turbulence
,”
Phys. Fluids
9
,
2148
(
1997
).
23.
J. G. M.
Kuerten
,
B. J.
Geurts
,
A. W.
Vreman
, and
M.
Germano
, “
Dynamic inverse modeling and its testing in large-eddy simulation of the mixing layer
,”
Phys. Fluids
11
,
3778
(
1999
).
24.
S.
Stolz
and
N. A.
Adams
, “
An approximate deconvolution procedure for large-eddy simulation
,”
Phys. Fluids
11
,
1699
(
1999
).
25.
S.
Stolz
,
N. A.
Adams
, and
L.
Kleiser
, “
An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows
,”
Phys. Fluids
13
,
997
(
2001
).
26.
J. A.
Domaradzki
and
K.-C.
Loh
, “
The subgrid-scale estimation model in physical space representation
,”
Phys. Fluids
11
,
2330
(
1999
).
27.
J. A. Domaradzki, T. Dubois, and A. Honein, “A subgrid-scale estimation model applied to large eddy simulations of compressible turbulence,” in CTR Proceedings, 1998 Summer Program, Center for Turbulence Research, Stanford University and NASA Ames Research Center, Stanford, California, 1998.
28.
S. Stolz, N. A. Adams, and L. Kleiser, “Analysis of subgrid scales and subgrid scale modeling for shock-boundary-layer interaction,” in Turbulence and Shear Flow I, edited by S. Banerjee and J. Eaton (Begell, New York, 1999), pp. 881–886.
29.
N. A.
Adams
, “
Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Reθ=1685,
J. Fluid Mech.
420
,
47
(
2000
).
30.
R. Vichnevetsky and J. B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations (SIAM, Philadelphia, 1982).
31.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
32.
G. K. Batchelor, The Theory of Homogenous Turbulence (Cambridge University Press, Cambridge, 1953).
33.
G. S. Settles and L. J. Dodson, “Hypersonic shock/boundary-layer interaction database,” Technical Report NASA CR 177577, NASA Ames Research Center, Moffet Field, California, 1991.
34.
N. A.
Adams
and
K.
Shariff
, “
A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems
,”
J. Comput. Phys.
127
,
27
(
1996
).
35.
R.
Mittal
and
P.
Moin
, “
Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows
,”
AIAA J.
35
,
1415
(
1997
).
36.
N. A.
Adams
, “
Direct numerical simulation of turbulent compression corner flow
,”
Theor. Comput. Fluid Dyn.
12
,
109
(
1998
).
37.
J. H.
Williamson
, “
Low-storage Runge–Kutta schemes
,”
J. Comput. Phys.
35
,
48
(
1980
).
38.
O. V.
Vasilyev
,
T. S.
Lund
, and
P.
Moin
, “
A general class of commutative filters for LES in complex geometries
,”
J. Comput. Phys.
146
,
82
(
1998
).
39.
Y.
Na
and
P.
Moin
, “
Direct numerical simulation of separated turbulent boundary layer
,”
J. Fluid Mech.
370
,
175
(
1998
).
40.
E. T.
Spyropoulos
and
G. A.
Blaisdell
, “
Evaluation of the dynamic model for simulations of compressible decaying isotropic turbulence
,”
AIAA J.
34
,
990
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.