Two different Lagrangian approaches for particle/particle collisions are described. The first model is based on the simultaneous tracking of several particles and suitable treatment is developed on particle pairs to detect collisions on each time step of the particle trajectory realization. The second method is based on a stochastic approach where one single particle is tracked, and successive random processes are applied to generate a fictitious partner of collision. In order to validate both approaches, simulations have been carried out in homogeneous isotropic turbulence and they have been compared with LES data. The particle/particle correlated motion through the surrounding fluid is proved to be a key parameter in a particle/particle collision process.

1.
A.
Berlemont
,
P.
Desjonquères
, and
G.
Gouesbet
, “
Particle Lagrangian simulation in turbulent flows
,”
Int. J. Multiphase Flow
16
,
19
(
1990
).
2.
A.
Berlemont
,
M. S.
Grancher
, and
G.
Gouesbet
, “
Heat and mass transfer coupling between vaporizing droplets and turbulence using a Lagrangian approach
,”
Int. J. Heat Mass Transf.
38
,
3023
(
1995
).
3.
R.
Mei
and
K. C.
Hu
, “
On the collision rate of small particles in turbulent flows
,”
J. Fluid Mech.
391
,
67
(
1999
).
4.
L. P.
Wang
,
A. S.
Wexler
, and
Y.
Zhou
, “
On the collision rate of small particles in isotropic turbulence
,”
Phys. Fluids
10
,
266
(
1998
).
5.
Y.
Zhou
,
A. S.
Wexler
, and
L. P.
Wang
, “
On the collision rate of small particles in isotropic turbulence. II. Finite inertia case
,”
Phys. Fluids
10
,
1206
(
1998
).
6.
J.
Laviéville
,
E.
Deutsch
, and
O.
Simonin
, “
Large eddy simulation of interactions between colliding particles and a homogeneous isotropic turbulence field,” Gas–Solid Flows, ASME Fluids Engineering Conference, Hilton Head
,
FED
228
,
347
(
1995
).
7.
J. Laviéville, “Simulations numériques et modélisation des interactions entre l’entraînement par la turbulence et les collisions interparticulaires en ecoulements gaz–solide,” Ph.D. thesis, Université de Rouen, 1997.
8.
O. Simonin, E. Deutsch, and M. Boivin, “Large eddy simulation and second-moment closure model of particle fluctuating motion in two-phase turbulent shear flows,” in Selected Papers from the 9th International Symposium on Turbulent Shear Flows, edited by F. Durst et al. (Springer-Verlag, Berlin, 1995), pp. 85–115.
9.
T.
Tanaka
and
Y.
Tsuji
, “
Numerical simulation of gas–solid two-phase flow in a vertical pipe: On the effect of inter-particle collision,” Gas–Solid Flows, ASME Fluids Engineering Conference, Portland
,
FED
121
,
123
(
1991
).
10.
Z. Chang, “Etude de collisions inter-particulaires en écoulement turbulent isotrope ou anisotrope par une approche Lagrangienne à plusieurs trajectoires simultanées,” Ph.D. thesis, Université de Rouen, 1998.
11.
A.
Berlemont
,
Z.
Chang
, and
G.
Gouesbet
, “
Particle Lagrangian tracking with hydrodynamic interactions and collisions
,”
Flow Turbul. Combust.
60
,
1
(
1998
).
12.
B.
Oesterlé
and
A.
Petitjean
, “
Simulation of particle-to-particle interactions in gas–solid flows
,”
Int. J. Multiphase Flow
19
,
199
(
1993
).
13.
M.
Sommerfeld
, “
The importance of inter-particle collisions in horizontal gas–solid channel flows,” Gas–Particle Flows, ASME Fluids Engineering Conference, Hilton Head, 1995
,
FED
228
,
335
(
1995
).
14.
A. Berlemont and P. Achim, “On the fluid/particle and particle/particle correlated motion for colliding particles in Lagrangian approach,” 3rd ASME/JSME Joint Fluids Engineering Conference, FEDSM99-7859, 1999.
15.
G.
Gouesbet
and
A.
Berlemont
, “Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows,” Prog. Energy Combust. Sci. 133 (1999).
16.
F. N. Frenkiel, “Etude statistique de la turbulence—Fonctions spectrales et coefficients de corrélation,” Office National des Etudes et Recherches Áeronautiques, Paris, Rapport Technique 34, 1948.
17.
B. L.
Sawford
, “
Reynolds number effects in Lagrangian stochastic models of turbulent dispersion
,”
Phys. Fluids A
3
,
1577
(
1991
).
18.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of a small rigid sphere in a non uniform flow
,”
Phys. Fluids
26
,
883
(
1983
).
19.
D.
Burry
and
G.
Bergeles
, “
Dispersion of particles in anisotropic turbulence
,”
Int. J. Multiphase Flow
19
,
651
(
1993
).
20.
J.
Abrahamson
, “
Collision rates of small particles in a vigourously turbulent fluid
,”
Chem. Eng. Sci.
30
,
1371
(
1975
).
21.
C. Gourdel, O. Simonin, and E. Brunier, “Two-Maxwellian equilibrium distribution function for the modeling of a binary mixture of particles,” Proceedings of the 6th International Conference on Circulating Fluidized Beds, edited by J. Werther (DECHEMA, Frankfurt am Main, Germany, 1999), pp. 205–210.
22.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations, I. The basic experiments
,”
Mon. Weather Rev.
101
,
91
(
1963
).
23.
J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows,” Ph.D. dissertation, Department of Mechanical Engineering, TF 19, Stanford University, 1983.
24.
M.
Sommerfeld
, “
A stochastic approach to model inter-particle collisions in the frame of the Euler/Lagrange approach
,”
Ercoftac Bulletin
36
,
34
(
1998
).
25.
J. Lavieville, O. Simonin, A. Berlemont, and Z. Chang, “Validation of inter particle collision models based on large eddy simulation in gas solid turbulent homogeneous shear flows,” ASME Fluids Engineering Division Summer Meeting, FEDSM9-3623, 1997.
26.
F. Pigeonneau, “Modélisation et calcul numérique des collisions de gouttes en écoulement laminaire et turbulent,” Ph.D. thesis, Université de Paris VI, 1998.
This content is only available via PDF.
You do not currently have access to this content.