A subgrid scale model for large eddy simulations of turbulent premixed combustion is developed and validated. The approach is based on the concept of artificially thickened flames, keeping constant the laminar flame speed sl0. This thickening is simply achieved by decreasing the pre-exponential factor of the chemical Arrhenius law whereas the molecular diffusion is enhanced. When the flame is thickened, the combustion–turbulence interaction is affected and must be modeled. This point is investigated here using direct numerical simulations of flame–vortex interactions and an efficiency function E is introduced to incorporate thickening effects in the subgrid scale model. The input parameters in E are related to the subgrid scale turbulence (velocity and length scales). An efficient approach, based on similarity assumptions, is developed to extract these quantities from the resolved velocity field. A specific operator is developed to exclude the dilatational part of the velocity field from the estimation of turbulent fluctuations. The combustion model is then implemented in a compressible parallel finite volume–element solver able to handle hybrid grids to simulate a lateral injections combustor (LIC). Results are in agreement with the available experimental data.

1.
D. Veynante and T. Poinsot, “Reynolds averaged and large eddy simulation modeling for turbulent combustion,” in New Tools in Turbulence Modelling, edited by O. Métais and J. Ferziger (Springer, Verlag, 1997), pp. 105–140.
2.
U. Piomelli and J. R. Chasnov, “Large eddy simulations: theory and applications,” in Turbulence and Transition Modelling, edited by H. Hallbäck, D. S. Henningson, A. V. Johansson, and P. H. Alfredsson (Kluwer Academic, Dordrecht, 1996), pp. 269–336.
3.
J. Ferziger, “Large eddy simulation: an introduction and perspective,” in New Tools in Turbulence Modelling, edited by O. Métais and J. Ferziger (Springer, Verlag, 1997), pp. 29–47.
4.
M. Lesieur, “Recent approaches in large-eddy simulations of turbulence,” in New Tools in Turbulence Modelling, edited by O. Métais and J. Ferziger (Springer, Verlag, 1997), pp. 1–28.
5.
M.
Lesieur
and
O.
Métais
, “
New trends in large-eddy simulations of turbulence
,”
Annu. Rev. Fluid Mech.
28
,
45
(
1996
).
6.
L. Crocco and S. I. Cheng, “Theory of combustion instability in liquid propellant rocket motors,” volume Agardograph No 8. Butterworths Science, 1956.
7.
L. Crocco, “Research on combustion instability in liquid propellant rockedts,” in 12th Symposium (International) on Combustion, pp. 85–99, 1969.
8.
T.
Poinsot
and
S.
Candel
, “
A nonlinear model for ducted flame combustion instabilities
,”
Combust. Sci. Technol.
61
,
121
(
1988
).
9.
K.
McManus
,
T.
Poinsot
, and
S.
Candel
, “
A review of active control of combustion instabilities
,”
Prog. Energy Combust. Sci.
19
,
1
(
1993
).
10.
S. Candel, C. Huynh, and T. Poinsot, in Unsteady Combustion (Kluwer Academic, Dordrecht, 1996), pp. 83–112.
11.
S.
Menon
and
W. H.
Jou
, “
Large eddy simulations of combustion instability in an axisymmetric ramjet
,”
Combust. Sci. Technol.
75
,
53
(
1991
).
12.
K. N. C. Bray, M. Champion, and P. A. Libby, “The interaction between turbulence and chemistry in premixed turbulent flames,” in Turbulent Reacting Flows, Vol. 40 of Lecture Notes in Engineering, edited by R. Borghi and S. N. Murphy (Springer, Berlin, 1989), pp. 541–563.
13.
M.
Baum
,
D.
Haworth
,
T.
Poinsot
, and
N.
Darabiha
, “
Using direct numerical simulations to study H2/O2/N2 flames with complex chemistry in turbulent flows
,”
J. Fluid Mech.
281
,
1
(
1994
).
14.
T. D. Butler and P. J. O’Rourke, “A numerical method for two-dimensional unsteady reacting flows,” in Sixteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1977), pp. 1503–1515.
15.
P. J.
O’Rourke
and
F. V.
Bracco
, “
Two scaling transformations for the numerical computation of multidimensional unsteady laminar flames
,”
J. Comput. Phys.
33
,
185
(
1979
).
16.
A. R.
Kerstein
,
W.
Ashurst
, and
F. A.
Williams
, “
Field equation for interface propagation in an unsteady homogeneous flow field
,”
Phys. Rev. A
37
,
2728
(
1988
).
17.
V.
Smiljanovski
,
V.
Moser
, and
R.
Klein
, “
A capturing-tracking hybrid scheme for deflagration discontinuities
,”
Combustion Theory and Modelling
1
,
183
(
1997
).
18.
M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, “Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion,” in Twenty-seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1998), pp. 917–925.
19.
F. E. Williams, Combustion Theory, 2nd ed. (Addison-Wesley, Reading, MA, 1985).
20.
K. K. Kuo. Principles of Combustion (Wiley, New York, 1986).
21.
D.
Thibaut
and
S.
Candel
, “
Numerical study of unsteady turbulent premixed combustion: application to flashback simulation
,”
Combust. Flame
113
,
53
(
1998
).
22.
D. Veynante and T. Poinsot, “Large eddy simulation of combustion instabilities in turbulent premixed burners, in Annual Research Briefs (Center for Turbulence Research, Stanford University–NASA Ames, 1997).
23.
T.
Poinsot
,
D.
Veynante
, and
S.
Candel
, “
Quenching processes and premixed turbulent combustion diagrams
J. Fluid Mech.
228
,
561
(
1991
).
24.
C. Angelberger, D. Veynante, F. Egolfopoulos, and T. Poinsot, “Large eddy simulation of combustion instabilities in turbulent premixed flames,” in Proceedings of the Summer Program (Center for Turbulence Research, Stanford University–NASA Ames, 1998), pp. 61–82.
25.
H. T. Im, “Study of turbulent premixed flame propagation using a laminar flamelet model,” in Annual Research Briefs (Center for Turbulence Research, Stanford University–NASA Ames, 1995), pp. 347–360.
26.
H. G.
Im
,
T. S.
Lund
, and
J. H.
Ferziger
, “
Large eddy simulation of turbulent front propagation with dynamic subgrid models
,”
Phys. Fluids A
9
,
3826
(
1997
).
27.
F. C. Gouldin, “Combustion intensity and burning rate integral of premixed flames,” in Twenty-sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1996), pp. 381–388.
28.
A. Bourlioux, V. Moser, and R. Klein, “Large eddy simulations of turbulent premixed flames using a capturing/tracking hybrid approach,” in Sixth International Conference on Numerical Combustion (New Orleans, Louisiana, 1996).
29.
S. Menon, “Large eddy simulation of combustion instabilities,” in Sixth International Conference on Numerical Combustion (New Orleans, Louisiana, 1996).
30.
T. M. Smith and S. Menon, “Large eddy simulations of turbulent reacting stagnation point flows,” in AIAA 35th Aerospace Science Meeting, pages Paper 97–0372, Reno, Nevada, 1997.
31.
J. Piana, F. Ducros, and D. Veynante, “Large eddy simulations of turbulent premixed flames based on the g-equation and a flame front wrinkling description,” in Eleventh Symposium on Turbulent Shear Flows, Grenoble, France, 1997.
32.
H. G. Weller, G. Tabor, A. D. Gosman, and C. Fureby, “Application of a flame-wrinkling les combustion model to a turbulent mixing layer,” in Twenty-seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1998), pp. 899–907.
33.
J. M.
Duclos
,
D.
Veynante
, and
T.
Poinsot
, “
A comparison of flamelet models for premixed turbulent combustion
,”
Combust. Flame
95
,
101
(
1993
).
34.
A.
Trouvé
and
T.
Poinsot
, “
The evolution equation for the flame surface density
,”
J. Fluid Mech.
278
,
1
(
1994
).
35.
L.
Vervisch
,
E.
Bidaux
,
K. N. C.
Bray
, and
W.
Kollmann
, “
Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approach
,”
Phys. Fluids A
7
,
2496
(
1995
).
36.
R. O. S.
Prasad
and
J. P.
Gore
, “
An evaluation of flame surface density models for turbulent premixed jet flames
,”
Combust. Flame
116
,
1
(
1999
).
37.
C.
Meneveau
and
T.
Poinsot
, “
Stretching and quenching of flamelets in premixed turbulent combustion
,”
Combust. Flame
86
,
311
(
1991
).
38.
F. Nicoud, F. Ducros, and T. Schönfeld, “Towards direct and large eddy simulations of compressible flows in complex geometries,” Notes in Numerical Fluid Mechanics, edited by R. Friedrich and P. Bontoux, Computation and visualization of three-dimensional vortical and turbulent flows (Munich, Germany, 1996), Vol. 64, pp. 157–171.
39.
F. Ducros, F. Nicoud, and T. Schönfeld, “Large eddy simulations of compressible flows on hybrid meshes,” in Eleventh Symposium on Turbulent Shear Flows, Grenoble, France, 1997.
40.
T.
Schönfeld
and
M.
Rudgyard
, “
Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
37
,
1378
(
1999
).
41.
J.-M.
Samaniego
,
B.
Yip
,
T.
Poinsot
, and
S.
Candel
, “
Low-frequency combustion instability mechanism in a side-dump combustor
,”
Combust. Flame
94
,
363
(
1993
).
42.
S.
Candel
and
T.
Poinsot
, “
Flame stretch and the balance equation for the flame area
,”
Combust. Sci. Technol.
70
,
1
(
1990
).
43.
T. Poinsot, D. Veynante, A. Trouvé, and G. Ruetsch, “Turbulent flame propagation in partially premixed flames,” in Proceedings of the 1996 Summer Program (Center for Turbulence Research, 1996), pp. 111–136.
44.
P. K.
Yeung
,
S. S.
Girimaji
, and
S. B.
Pope
, “
Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets
,”
Combust. Flame
79
,
340
(
1990
).
45.
T.
Mantel
and
R.
Borghi
, “
A new model of premixed wrinkled flame propagation based on a scalar dissipation equation
,”
Combust. Flame
96
,
443
(
1994
).
46.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
47.
U.
Schumann
, “
Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli
,”
J. Comput. Phys.
18
,
376
(
1975
).
48.
J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Impoved subgrid scales models for large eddy simulations,” in AIAA 13th Fluid & Plasma Dyn. Conf., Snowmass, Colorado, 1980. AIAA Paper 80-1357.
49.
A. W.
Cook
, “
Determination of the constant coefficient in scale similarity models of turbulence
,”
Phys. Fluids A
9
,
1485
(
1997
).
50.
S.
Liu
,
C.
Meneveau
, and
J.
Katz
, “
On properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet
,”
J. Fluid Mech.
275
,
83
(
1994
).
51.
O. Vasilyev and T. Lund, “A general theory of discrete filtering for les in complex geonetry,” Technical Report Annual Research Briefs, Center for Turbulence Research, 1997.
52.
P. Sagaut, “Introduction à la simulation des grandes échelles pour les écoulements de fluide incompressible,” Mathématiques et Applications (Springer, Verlag, 1998).
53.
G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1988).
54.
T. Schönfeld, C. Angelberger, J.P. Légier, and S. Ducruix, “Numerical simulation of compressible reactive flows on unstructured grids,” in AIAA 37th Aerospace Science Meeting, Reno, Nevada, 1999. AIAA Paper 99-0414.
55.
M. Lesieur, “Turbulence in fluids,” Fluid Mechanics and its Applications (Kluwer Academic, Dordrecht, 1990).
56.
T.
Poinsot
and
S.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
(
1992
).
57.
O. Colin and M. Rudgyard, “Development of high-order Taylor-Galerkin schemes for unsteady calculations,” J. Comp. Phys. (to be published).
This content is only available via PDF.
You do not currently have access to this content.