Analytical solutions to the sinh-Poisson equation are discussed. This equation plays a role in the theory of vortex dynamics [Mallier and Maslowe, Phys. Fluids A 5, 1074 (1993)] and in the discussion of the most probable states of inviscid two-dimensional flows in fluids and plasmas [Montgomery and Joyce, Phys. Fluids 17, 1139 (1974)]. We present a family of double-periodic solutions on a rectangular grid. In limiting cases these solutions reproduce Mallier–Maslowe vortex streets and arrays of Greenhill’s point vortices.

1.
G.
Joyce
and
D.
Montgomery
, “
Negative temperature states for the two-dimensional guiding-center plasma
,”
J. Plasma Phys.
10
,
107
(
1973
).
2.
D.
Montgomery
and
G.
Joyce
, “
Statistical mechanics of negative temperature states
,”
Phys. Fluids
17
,
1139
(
1974
).
3.
R.
Mallier
and
S. A.
Maslowe
, “
A row of counter-rotating vortices
,”
Phys. Fluids A
5
,
1074
(
1993
).
4.
D.
Montgomery
,
W. H.
Matthaeus
,
W. T.
Stribling
,
D.
Martinez
, and
S.
Oughton
, “
Relaxation in two dimensions and the sinh-Poisson equation
,”
Phys. Fluids A
4
,
3
(
1992
).
5.
D.
Montgomery
,
X.
Shan
, and
W. H.
Matthaeus
, “
Navier–Stokes relaxation into sinh-Poisson states at finite Reynolds numbers
,”
Phys. Fluids A
5
,
2207
(
1993
).
6.
H.
Brands
,
S. R.
Maassen
, and
J. H.
Clercx
, “
Statistical mechanical predictions and Navier–Stokes dynamics of two-dimensional flows on a bounded domain
,”
Phys. Rev. E
60
,
2864
(
1999
).
7.
B. E.
McDonald
, “
Numerical calculation of nonunique solutions of a two-dimensional sinh-Poisson equation
,”
Phys. Rev. Lett.
34
,
4
(
1976
).
8.
D. L.
Book
,
S.
Fisher
, and
B. E.
McDonald
, “
Steady-state distributions of interacting discrete vortices
,”
J. Comput. Phys.
16
,
360
(
1974
).
9.
Y. B.
Pointin
and
T. S.
Lundgren
, “
Statistical mechanics of two-dimensional vortices in a bounded container
,”
Phys. Fluids
19
,
1459
(
1976
).
10.
A. C.
Ting
,
H. H.
Chen
, and
Y. C.
Lee
, “
Exact vortex solutions of two dimensional guiding-center plasmas
,”
Phys. Rev. Lett.
53
,
1348
(
1984
).
11.
A. C.
Ting
,
H. H.
Chen
, and
Y. C.
Lee
, “
Exact solutions of a nonlinear boundary value problem: The vortices of the two dimensional sinh-Poisson equation
,”
Physica D
26
,
37
(
1987
).
12.
R. A.
Pasmanter
, “
On long-lived vortices in 2-D viscous flows, most probable states of inviscid 2-D flows and soliton equations
,”
Phys. Fluids
6
,
1236
(
1994
).
13.
V. P.
Pavlenko
and
L.
Uby
, “
Hamiltonian description and stability of magnetic electron vortices
,”
Phys. Fluids B
5
,
1980
(
1993
).
14.
T.
Dauxois
, “
Nonlinear stability of counter-rotating vortices
,”
Phys. Fluids
6
,
1625
(
1994
).
15.
T.
Dauxois
,
S.
Fauve
, and
L.
Tuckerman
, “
Stability of periodic arrays of vortices
,”
Phys. Fluids
8
,
487
(
1996
).
16.
K. W.
Chow
,
N. W. M.
Ko
,
R. C. K.
Leung
, and
S. K.
Tang
, “
Solitons in (2+0) dimensions and their applications in vortex dynamics
,”
Fluid Dyn. Res.
21
,
101
(
1997
).
17.
K. W.
Chow
,
N. W. M.
Ko
, and
S. K.
Tang
, “
Exact solutions of a nonlinear boundary value problem: The vortices of the two dimensional sinh-Poisson equation
,”
Phys. Fluids
10
,
1111
(
1998
).
18.
R.
Steuerwald
, “
Über Enneper’sche flächen und Bäcklund’sche transformation
,”
Abhandl. Bayerischen Akad. Wiss. (Muenchen)
40
,
1
(
1936
).
19.
G. J.
Lamb
, Jr.
, “
Analytical descriptions of ultrashot optical pulse propagating in a resonant medium
,”
Rev. Mod. Phys.
43
,
99
(
1971
).
20.
O. V.
Kaptsov
, “
Some classes of two-dimensional vortex flows of an ideal fluid
,”
Sov. J. Appl. Mech. Techn. Phys.
30
,
105
(
1989
).
21.
A. G.
Greenhill
, “
Plane vortex motion
,”
Q. J. Math.
15
,
10
(
1878
).
22.
Y.
Choi
and
J. A.
Humphrey
, “
Analytical predictions of two-dimensional potential flow due to fixed vortices in a rectangular domain
,”
J. Comput. Phys.
56
,
15
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.