Analytical solutions to the sinh-Poisson equation are discussed. This equation plays a role in the theory of vortex dynamics [Mallier and Maslowe, Phys. Fluids A 5, 1074 (1993)] and in the discussion of the most probable states of inviscid two-dimensional flows in fluids and plasmas [Montgomery and Joyce, Phys. Fluids 17, 1139 (1974)]. We present a family of double-periodic solutions on a rectangular grid. In limiting cases these solutions reproduce Mallier–Maslowe vortex streets and arrays of Greenhill’s point vortices.
REFERENCES
1.
G.
Joyce
and D.
Montgomery
, “Negative temperature states for the two-dimensional guiding-center plasma
,” J. Plasma Phys.
10
, 107
(1973
).2.
D.
Montgomery
and G.
Joyce
, “Statistical mechanics of negative temperature states
,” Phys. Fluids
17
, 1139
(1974
).3.
R.
Mallier
and S. A.
Maslowe
, “A row of counter-rotating vortices
,” Phys. Fluids A
5
, 1074
(1993
).4.
D.
Montgomery
, W. H.
Matthaeus
, W. T.
Stribling
, D.
Martinez
, and S.
Oughton
, “Relaxation in two dimensions and the sinh-Poisson equation
,” Phys. Fluids A
4
, 3
(1992
).5.
D.
Montgomery
, X.
Shan
, and W. H.
Matthaeus
, “Navier–Stokes relaxation into sinh-Poisson states at finite Reynolds numbers
,” Phys. Fluids A
5
, 2207
(1993
).6.
H.
Brands
, S. R.
Maassen
, and J. H.
Clercx
, “Statistical mechanical predictions and Navier–Stokes dynamics of two-dimensional flows on a bounded domain
,” Phys. Rev. E
60
, 2864
(1999
).7.
B. E.
McDonald
, “Numerical calculation of nonunique solutions of a two-dimensional sinh-Poisson equation
,” Phys. Rev. Lett.
34
, 4
(1976
).8.
D. L.
Book
, S.
Fisher
, and B. E.
McDonald
, “Steady-state distributions of interacting discrete vortices
,” J. Comput. Phys.
16
, 360
(1974
).9.
Y. B.
Pointin
and T. S.
Lundgren
, “Statistical mechanics of two-dimensional vortices in a bounded container
,” Phys. Fluids
19
, 1459
(1976
).10.
A. C.
Ting
, H. H.
Chen
, and Y. C.
Lee
, “Exact vortex solutions of two dimensional guiding-center plasmas
,” Phys. Rev. Lett.
53
, 1348
(1984
).11.
A. C.
Ting
, H. H.
Chen
, and Y. C.
Lee
, “Exact solutions of a nonlinear boundary value problem: The vortices of the two dimensional sinh-Poisson equation
,” Physica D
26
, 37
(1987
).12.
R. A.
Pasmanter
, “On long-lived vortices in 2-D viscous flows, most probable states of inviscid 2-D flows and soliton equations
,” Phys. Fluids
6
, 1236
(1994
).13.
V. P.
Pavlenko
and L.
Uby
, “Hamiltonian description and stability of magnetic electron vortices
,” Phys. Fluids B
5
, 1980
(1993
).14.
T.
Dauxois
, “Nonlinear stability of counter-rotating vortices
,” Phys. Fluids
6
, 1625
(1994
).15.
T.
Dauxois
, S.
Fauve
, and L.
Tuckerman
, “Stability of periodic arrays of vortices
,” Phys. Fluids
8
, 487
(1996
).16.
K. W.
Chow
, N. W. M.
Ko
, R. C. K.
Leung
, and S. K.
Tang
, “Solitons in dimensions and their applications in vortex dynamics
,” Fluid Dyn. Res.
21
, 101
(1997
).17.
K. W.
Chow
, N. W. M.
Ko
, and S. K.
Tang
, “Exact solutions of a nonlinear boundary value problem: The vortices of the two dimensional sinh-Poisson equation
,” Phys. Fluids
10
, 1111
(1998
).18.
R.
Steuerwald
, “Über Enneper’sche flächen und Bäcklund’sche transformation
,” Abhandl. Bayerischen Akad. Wiss. (Muenchen)
40
, 1
(1936
).19.
G. J.
Lamb
, Jr., “Analytical descriptions of ultrashot optical pulse propagating in a resonant medium
,” Rev. Mod. Phys.
43
, 99
(1971
).20.
O. V.
Kaptsov
, “Some classes of two-dimensional vortex flows of an ideal fluid
,” Sov. J. Appl. Mech. Techn. Phys.
30
, 105
(1989
).21.
22.
Y.
Choi
and J. A.
Humphrey
, “Analytical predictions of two-dimensional potential flow due to fixed vortices in a rectangular domain
,” J. Comput. Phys.
56
, 15
(1984
).
This content is only available via PDF.
© 2000 American Institute of Physics.
2000
American Institute of Physics
You do not currently have access to this content.