A numerical model is used to simulate the fingering and splashing of a droplet impacting a solid surface. A methodology is presented for perturbing the velocity of fluid near the solid surface at a time shortly after impact. Simulation results are presented of the impact of molten tin, water, and heptane droplets, and compared with photographs of corresponding impacts. Agreement between simulation and experiment is good for a wide range of behaviors. An expression for a splashing threshold predicts the behavior of the molten tin. The results of water and especially heptane, however, suggest that the contact angle plays an important role, and that the expression may be applicable only to impacts characterized by a relatively low value of the Ohnesorge number. Various experimental data of the number of fingers about an impacting droplet agree well with predictions of a previously published correlation derived from application of Rayleigh–Taylor instability theory.

1.
S. T.
Thoroddsen
and
J.
Sakakibara
, “
Evolution of the fingering pattern of an impacting drop
,”
Phys. Fluids
10
,
1359
(
1998
).
2.
K.
Range
and
F.
Feuillebois
, “
Influence of surface roughness on liquid drop impact
,”
J. Colloid Interface Sci.
203
,
16
(
1998
).
3.
H. E. Edgerton and J. R. Killian, Jr., Flash! Seeing the Unseen by Ultra High-speed Photography (Boston C.T. Branford Co., Boston, 1954).
4.
M.
Bussmann
,
J.
Mostaghimi
, and
S.
Chandra
, “
On a three-dimensional volume tracking model of droplet impact
,”
Phys. Fluids
11
,
1406
(
1999
).
5.
A. M.
Worthington
, “
On the forms assumed by drops of liquids falling vertically on a horizontal plate
,”
Proc. R. Soc. London
25
,
261
(
1876
).
6.
A. M.
Worthington
, “
A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate
,”
Proc. R. Soc. London
25
,
498
(
1877
).
7.
A. M. Worthington, The Splash of a Drop (The Society for Promoting Christian Knowledge, London, 1907).
8.
O. G.
Engel
, “
Waterdrop collisions with solid surfaces
,”
J. Res. Natl. Bur. Stand.
54
,
281
(
1955
).
9.
Z.
Levin
and
P. V.
Hobbs
, “
Splashing of water drops on solid and wetted surfaces: Hydrodynamics and charge separation
,”
Philos. Trans. R. Soc. London, Ser. A
269
,
555
(
1971
).
10.
C. D.
Stow
and
M. G.
Hadfield
, “
An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface
,”
Proc. R. Soc. London, Ser. A
373
,
419
(
1981
).
11.
C.
Mundo
,
M.
Sommerfeld
, and
C.
Tropea
, “
Droplet-wall collisions. Experimental studies of the deformation and breakup process
,”
Int. J. Multiphase Flow
21
,
151
(
1995
).
12.
G. E.
Cossali
,
A.
Coghe
, and
M.
Marengo
, “
The impact of a single drop on a wetted solid surface
,”
Exp. Fluids
22
,
463
(
1997
).
13.
A. L.
Yarin
and
D. A.
Weiss
, “
Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity
,”
J. Fluid Mech.
283
,
141
(
1995
).
14.
L. J. H.
Wachters
and
N. A. J.
Westerling
, “
The heat transfer from a hot wall to impinging water drops in the spheroidal state
,”
Chem. Eng. Sci.
21
,
1047
(
1966
).
15.
R. F.
Allen
, “
The role of surface tension in splashing
,”
J. Colloid Interface Sci.
51
,
350
(
1975
).
16.
D. H.
Sharp
, “
An overview of Rayleigh–Taylor instability
,”
Physica D
12
,
3
(
1984
).
17.
R.
Bhola
and
S.
Chandra
, “
Parameters controlling solidification of molten wax droplets falling on a solid surface
,”
J. Mater. Sci.
34
,
4883
(
1999
).
18.
M.
Pasandideh-Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Motaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
(
1996
).
19.
S. D.
Aziz
and
S.
Chandra
, “
Impact, recoil and splashing of molten metal droplets
,”
Int. J. Heat Mass Transf.
43
,
2841
(
2000
).
20.
H.
Marmanis
and
S. T.
Thoroddsen
, “
Scaling of the fingering pattern of an impacting drop
,”
Phys. Fluids
8
,
1344
(
1996
).
21.
H.-Y.
Kim
,
Z. C.
Feng
, and
J.-H.
Chun
, “
Instability of a liquid jet emerging from a droplet upon collision with a solid surface
,”
Phys. Fluids
12
,
531
(
2000
).
22.
B. L.
Scheller
and
D. W.
Bousfield
, “
Newtonian drop impact with a solid surface
,”
AIChE J.
41
,
1357
(
1995
).
23.
B.
Prunet-Foch
,
F.
Legay
,
M.
Vignes-Adler
, and
C.
Delmotte
, “
Impacting emulsion drop on a steel plate: Influence of the solid substrate
,”
J. Colloid Interface Sci.
199
,
151
(
1998
).
24.
M.
Vignes-Adler
,
F.
Legay-Désesquelles
, and
B.
Prunet-Foch
, “
Instabilités de ligne de contact observées lors de l’écrasement de gouttes
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
317
,
303
(
1993
).
25.
D.
Gueyffier
and
S.
Zaleski
, “
Formation de digitations lors de l’impact d’une goutte sur un film liquide
,”
C. R. Acad. Sci. Paris. Série II
326
,
839
(
1998
).
26.
M. Rieber and A. Frohn, “Numerical simulation of splashing drops,” in Proceedings of the 14th International Conference on Liquid Atomization and Spray Systems, Manchester, UK, 6–8 June 1998, edited by A. J. Yule.
27.
M.
Rieber
and
A.
Frohn
, “
A numerical study on the mechanism of splashing
,”
Int. J. Heat Fluid Flow
20
,
455
(
1999
).
28.
D. B. Kothe, R. C. Mjolsness, and M. D. Torrey, “RIPPLE: A computer program for incompressible flows with free surfaces,” Technical Report LA-12007-MS, LANL, 1991.
29.
D. L. Youngs, “An interface tracking method for a 3D Eulerian hydrodynamics code,” Technical Report 44/92/35, AWRE, 1984.
30.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
31.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
69
,
865
(
1997
).
32.
S.
Chandra
and
C. T.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London, Ser. A
432
,
13
(
1991
).
33.
M. Bussmann, “A three-dimensional model of an impacting droplet,” Ph.D. thesis, University of Toronto (2000).
34.
Lord
Rayleigh
, “
On the instability of jets
,”
Proc. London Math. Soc.
10
,
4
(
1878
).
35.
M.
Pasandideh-Fard
,
R.
Bhola
,
S.
Chandra
, and
J.
Mostaghimi
, “
Deposition of tin droplets on a steel plate: Simulations and experiments
,”
Int. J. Heat Mass Transf.
41
,
2929
(
1998
).
36.
T. Mao, “Impact of liquid droplets on solid surfaces and its application to carryover deposition in kraft recovery boilers,” Ph.D. thesis, University of Toronto (1996).
37.
M. Marengo, R. Rioboo, S. Sikalo, and C. Tropea, “Time evolution of drop spreading onto dry, smooth solid surfaces,” in Proceedings of the 14th International Conference on Liquid Atomization and Spray Systems, Manchester, UK, 6–8 June 1998, edited by A. J. Yule.
38.
N. B. Vargaftik, Y. K. Vinogradov, and V. S. Yargin, Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures, 3rd ed. (Begell House, New York, 1996).
This content is only available via PDF.
You do not currently have access to this content.